为了研究机构在复杂压力作用下的材料性能,本文设计了一套气动变载荷压力加载系统用来模拟复杂压力加载作用。但由于在实际气动压力加载系统应用中存在易受干扰、时滞性大和非线性等问题,难以实现给定波形地精确跟踪。为了提高气动变载荷压力加载系统的跟踪精度,文中设计了一种分数阶PID改进型自抗扰控制器应用于气动变载荷压力加载控制之中,该控制器利用分数阶PID取代常规自抗扰控制器中的非线性状态误差反馈器,因此结合了分数阶PID控制器良好的动态性能和自抗扰控制器良好的抗干扰能力。文中和常规自抗扰控制进行了仿真和实验比较,结果表明,该控制算法响应速度快,跟踪精度高,抗干扰能力强。
关键字:压力加载;气动加载系统;分数阶PID改进型自抗扰控制;波形跟踪
Abstract
In order to study the material performance of the mechanism under complex pressure, a set of pneumatic variable load pressure loading system is designed to simulate complex pressure loading in this paper。However, it is difficult to realize accurate tracking of given waveforms due to the problems of interference, large time delay and nonlinearity in the application of pneumatic pressure loading system. In order to improve the tracking accuracy of the pneumatic variable load pressure loading system, a fractional order PID improved active disturbance rejection controller is designed and applied to the pneumatic variable load pressure loading control. The controller uses fractional order PID to replace the nonlinear state error feedback in the conventional active disturbance rejection controller, therefore, the controller combines the good dynamic performance of fractional order PID controller with the good anti-interference ability of active disturbance rejection controller. Compared with the conventional active disturbance rejection control, the simulation and experiment results show that the algorithm has fast response speed, high tracking accuracy and strong anti-interference ability.
Key words: Pressure loading; Pneumatic loading system; Fractional order improved active disturbance rejection control; Waveform tracking
关键词
压力加载;气动加载系统;分数阶PID改进型自抗扰控制;波形跟踪
{{custom_keyword}} /
Key words
Pressure loading; /
Pneumatic loading system; /
Fractional order improved active disturbance rejection control; /
Waveform tracking
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Li A M, Meng D Y, Lu B. Nonlinear cascade control of single rod cylinder based on extended disturbance ob-server[J]. Journal of Central South University, 2019, 26(06): 1637-1648.
[2] 田艳兵,徐亚明,刘庆龙,等. 气动二维超精密伺服系统输出反馈滑模控制[J]. 机械工程学报, 2019, 55(7): 163-171.
Tian Yanbing, Xu Yaming, Liu Qinglong, et al. Output feedback sliding mode control of pneumatic two dimen-sional ultra precision servo system [J]. Journal of Me-chanical Engineering, 2019, 55 (7): 163-171
[3] 刘福才,刘砚,徐文丽,等. 气动加载系统的模糊自适应逆控制方法[J]. 机械工程学报, 2014, 50(14): 185-190.
LIU Fucai, LIU Yan, XU Wenli, et al. Fuzzy Adaptive Inverse Control Method for Pneumatic Loading System[J]. Journal of Mechanical Engineering, 2014, 50(14): 185-190.
[4] WANG X S, CHENG Y H, PENG G Z. Modeling and self-tuning pressure regulator design for pneumatic pres-sure load systems[J]. Control Engineering Practice, 2007, 15(9): 1161-1168.
[5] 魏琼,焦宗夏,吴帅,等. 气动伺服加载系统的非线性复合控制[J]. 机械工程学报, 2017, 53(14): 217-224.
WEI Qiong, JIAO Zongxia, WU Shuai, et al. Nonlinear Composite Control of Pneumatic Servo Loading System[J]. Journal of Mechanical Engineering, 2017, 53(14): 217-224.
[6] 任丽娜, 李小广, 高琳琪, 等. 气动加载系统的无模型自适应控制方法[J]. 高技术通讯, 2020, 30(04): 409-414.
REN Lina, LI Xiaoguang, GAO Linqi, et al. Model Free Adaptive Control Method for Pneumatic Loading System [J]. High Technology Communications, 2020, 30(04): 409-414.
[7] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策,1998(01): 19-23.
Han Jingqing. Active disturbance rejection controller and its application [J]. Control and decision making, 1998 (01): 19-23
[8] 戚壮,张文莲,王美琪,等. 分数阶PID扭矩控制在边驱耦合轻轨车辆的应用研究[J]. 自动化学报,2020, 46(03): 482-494.
Qi Zhuang, Zhang Wenlian, Wang Meiqi, et al. Application of fractional PID torque control in side drive coupled light rail vehicles [J]. Journal of automation, 2020, 46 (03): 482-494
[9] Tong X, Zheng H, Li W. The Modeling and Simulation of Pneumatic Loading System of Double-Sided Polishing Machine[J]. New Technology and New Process, 2011, 416: 154-158.
[10] Wang J N, Wang X D, Zheng L, et al. Active Disturbance Rejection Control of Differential Drive Assist Steering for Electric Vehicles[J]. Energies ,2020, 13(10): 112-119
[11] Feng M Y, Jiao X H, Zhong Wang. Cascade active dis-turbance rejection control–based double closed-loop speed tracking[J]. control for automotive engine. 2020, 21(8): 1541-1554
[12] 董家臣,高钦和,陈志翔,等. 基于EKF-LESO级联观测的永磁直线同步电机无传感器线性自抗扰控制[J]. 振动与冲击, 2019, 38(21): 53-61+70.
Dong Jiachen, Gao Qinhe, Chen Zhixiang, et al. Sensor-less linear active disturbance rejection control of permanent magnet linear synchronous motor based on ekf-leso cascade observation [J]. Vibration and shock, 2019, 38 (21): 53-61 + 70
[13] Xia Y, Fu M, Li C, et al. Active disturbance rejection con-trol for active suspension system of tracked vehicles with gun[J]. IEEE Transactions on Industrial Electronic, 2018, 65(5): 4051-4060.
[14] 龙满林,付永领,李光华,等. 自抗扰算法在直流力矩电机伺服系统中的应用[J]. 中国机械工程, 2012, 23(09): 1047-1050.
Long Manlin, Fu Yongling, Li Guanghua, et al. Applica-tion of active disturbance rejection algorithm in DC torque motor servo system [J]. China Mechanical Engineering, 2012, 23 (09): 1047-1050
[15] 薛定宇,赵春娜. 分数阶系统的分数阶PID控制器设计[J]. 控制理论与应用, 2007, 24(05): 81-86.
Xue Dingyu, Zhao Chunna. Design of Fractional Order PID controller for fractional order systems [J]. Control theory and application, 2007, 24 (05): 81-86
[16] 曹军义, 曹秉刚. 分数阶控制器的数字实现及其特性[J]. 控制理论与应用, 2006(05): 791-794+799.
Cao Junyi, Cao Binggang. The digital implementation of fractional order controller and its characteristics[J]. Control Theory and Applications,2006(05):791-794+799.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}