基于粒子滤波算法的风力发电塔地震动力响应预测

徐亚洲,任倩倩,于明阳,时文浩

振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 161-168.

PDF(2223 KB)
PDF(2223 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 161-168.
论文

基于粒子滤波算法的风力发电塔地震动力响应预测

  • 徐亚洲,任倩倩,于明阳,时文浩
作者信息 +

Seismic dynamic response prediction for a wind turbine tower based on particle filter algorithm

  • XU Yazhou, REN Qianqian, YU Mingyang, SHI Wenhao
Author information +
文章历史 +

摘要

建立有限元分析模型过程中产生的误差和不确定性可导致试验和有限元分析结果之间显著的差异性,量化此类不确定性对结构动力响应预测尤为重要。基于粒子滤波算法对有限元计算结果的不确定性进行量化,提出了一个用于结构动力响应预测的概率贝叶斯估计计算框架,并通过风力发电塔振动台试验动力响应观测结果对计算方法的合理性与有效性进行验证。结果表明,随地震波输入幅值的增大,有限元计算结果的误差显著增大,考虑试验观测值修正之后可以显著减小此类不确定性的影响;粒子滤波算法用于结构动力响应预测精度较好,预测值与试验实测值具有很好的一致性;将粒子滤波算法与振动台试验相结合能够对结构动力响应进行有效预测,具有一定的工程应用参考价值。
关键词:贝叶斯估计;粒子滤波算法;动力响应预测;风力发电塔;振动台试验

Abstract

The deviations and uncertainties during the process of establishing the finite element model (FEM) will lead to significant differences between the experimental results and the corresponding calculation results of FEM analysis. Therefore, quantifying the uncertainty is very important for the prediction of the structural response. The uncertainty of finite element results was quantified based on the particle filter method, and a probabilistic Bayesian estimation framework was proposed to use in structural dynamic response prediction. The rationality and effectiveness of this framework could be verified by the dynamic response observation results of wind turbine structure through the shaking table test. The results show that, the deviation of the FEM calculation results increases significantly with the increase of seismic wave input amplitude, and the uncertainty of numerical calculation results can be significantly reduced after considering the correction of experimental observation values. The prediction of structural dynamic response based on the particle filter have good accuracy, and the predicted values are in good agreement with the experimental data. The combination of particle filter method and shaking table test can effectively predict the dynamic response of structure, which has certain reference value in engineering application.
Key words: Bayesian estimation; particle filter method; dynamic response prediction; wind turbine tower; shaking table test

关键词

贝叶斯估计 / 粒子滤波算法 / 动力响应预测 / 风力发电塔 / 振动台试验

Key words

Bayesian estimation / particle filter method / dynamic response prediction / wind turbine tower / shaking table test

引用本文

导出引用
徐亚洲,任倩倩,于明阳,时文浩. 基于粒子滤波算法的风力发电塔地震动力响应预测[J]. 振动与冲击, 2022, 41(15): 161-168
XU Yazhou, REN Qianqian, YU Mingyang, SHI Wenhao. Seismic dynamic response prediction for a wind turbine tower based on particle filter algorithm[J]. Journal of Vibration and Shock, 2022, 41(15): 161-168

参考文献

[1]  Beck J L, Katafygiotis L S. Updating Models and Their Uncertainties. I: Bayesian Statistical Framework[J]. Journal of Engineering Mechanics, 1998, 124(4): 455-461.
[2]  Jang J, Smyth A. Bayesian model updating of a full-scale finite element model with sensitivity-based clustering[J]. Structural Control and Health Monitoring, 2017, 24(11): e2004.
[3]  Schuëller G I. On the treatment of uncertainties in structural mechanics and analysis[J]. Computers & Structures, 2007, 85(5-6): 235-243.
[4]  Behmanesh I, Yousefianmoghadam S, Nozari A, et al. Uncertainty quantification and propagation in dynamic models using ambient vibration measurements, application to a 10-story building[J]. Mechanical Systems and Signal Processing, 2018, 107: 502-514.
[5] 冯伟, 刘保国, 丁浩, 等. 非参数不确定动力学建模研究综述[J]. 振动与冲击, 2020, 39(5): 1-9.
    Feng Wei, Liu Baoguo, Ding Hao, et al. Review of uncertain nonparametric dynamic modeling[J]. Journal of Vibration and Shock, 2020, 39(5): 1-9.
[6] Jalayer F, Iervolino I, Manfredi G. Structural modeling uncertainties and their influence on seismic assessment of existing RC structures[J]. Structural Safety, 2010, 32(3): 220-228.
[7]  Zhang R X, Mahadevan S. Model uncertainty and Bayesian updating in reliability-based inspection [J]. Structural Safety, 2000, 22: 145-160.
[8]  陈辉, 张衡, 李烨君, 等. 测量模态不确定的梁式结构随机有限元模型修正[J]. 振动工程学报, 2019, 32(4): 653-659.
    Chen Hui, Zhang Heng, Li Yejun, et al. Stochastic finite element model updating of beam structure based on uncertain measurement modes[J]. Journal of Vibration Engineering. 2019, 32(4): 653-659.
[9] 李浩. 混凝土结构抗震性能的不确定性分析与研究[D].湖南大学, 2011.
    Li Hao. Study and uncertainty analysis on seismic performance of concrete structures[D]. Hunan University, 2011.
[10]  Haug A J. Bayesian estimation and tracking: a practical guide [M]. JohnWiley & Sons, 2012.
[11] 毛文贵, 李建华, 刘桂萍. 遗传智能采样技术的贝叶斯理论识别滑动轴承-转子系统不平衡量[J]. 振动工程学报, 2019, 32(4): 660-667.
    Mao Wengui, Li Jianhua, Liu Guiping. Bayesian theory using genetic intelligent sampling technique to identify the unbalance parameters of a sliding bearing-rotor system[J]. Journal of Vibration Engineering. 2019, 32(4): 660-667.
[12] Pepi C, Gioffrè M, Grigoriu M. Bayesian inference for parameters estimation using experimental data[J]. Probabilistic Engineering Mechanics, 2020, 60: 103025.
[13] Sedehi O, Papadimitriou C, Katafygiotis L S. Data-driven uncertainty quantification and propagation in structural dynamics through a hierarchical Bayesian framework[J]. Probabilistic Engineering Mechanics, 2020, 60: 103047.
[14] 黄小平, 王岩, 缪鹏程. 粒子滤波原理及应用: MATLAB仿真[M]. 北京, 电子工业出版社, 2017.
    Huang Xiaoping, Wang Yan, Miao Pengcheng. Principle and application of particle filter: MATLAB simulation[M]. Beijing, Publishing House of Electronics Industry, 2017.
[15] 郭小军. 基于粒子滤波器的结构损伤识别及可靠度分析[D]. 东南大学, 2016.
    Guo Xiaojun. Structural damage identification based on the particle filter and reliability analysis[D]. Southeast University, 2016.
[16] 陈博文. 基于滤波技术的结构损伤识别研究[D]. 东南大学, 2017.
    Chen Bowen. Structural damage identification based on filter technique[D]. Southeast University, 2017.
[17] 黄睿. 基于粒子滤波的结构可靠度分析[D]. 东南大学, 2018.
    Huang Rui. Structural reliability analysis based on particle filter[D]. Southeast University, 2018.
[18] 严刚, 汤剑飞. 基于粒子滤波的疲劳裂纹扩展和剩余寿命预测实验研究[J]. 实验力学, 2019, 34(5): 775-782.
    Yan Gang, Tang Jianfei. Experimental study on prediction of fatigue creak growth and residual life by using particle filter[J]. Journal of experimental mechanics, 2019, 34(5): 775-782.
[19] 杨伟博, 袁慎芳, 邱雷, 等. 基于辅助粒子滤波的疲劳裂纹扩展预测研究[J]. 振动与冲击, 2018, 37(5): 114-125.
    Yang Weibo, Yuan Shenfang, Qiu Lei, et al. Prediction of fatigue crack propagation based on auxiliary particle filtering[J]. Journal of Vibration and Shock, 2018, 37(5): 114-125.
[20] Corbetta M, Sbarufatti C, Manes A, et al. Real-time prognosis of random loaded structures via Bayesian filtering: A preliminary discussion[J]. Engineering Fracture Mechanics, 2015, 145: 143-160.
[21] Neerukatti R K, Hensberry K, Kovvali N, et al. A novel probabilistic approach for damage localization and prognosis including temperature compensation[J]. Journal of Intelligent Material Systems and Structures, 2015, 27(5): 592-607.
[22] 樊学平, 刘月飞, 吕大刚. 应用高斯粒子滤波器的桥梁可靠性在线预测[J]. 哈尔滨工业大学学报, 2016, 48(06): 164-169.
    Fan Xueping, Liu Yuefei, Lv Dagang. On-line reliability prediction of bridges based on Gaussian particle filter[J]. Journal of Harbin Institute of Technology, 2016, 48(06): 164-169.
[23] 樊学平, 屈广, 刘月飞. 桥梁时变可靠度指标的改进粒子滤波预测算法[J]. 同济大学学报, 2019, 47(8): 1115-1130.
    Fan Xueping, Qu Guang, Liu Yuefei. Improved particle filter prediction algorithm of time-variant reliability indices for bridges[J]. Journal of Tongji University, 2019, 47(8): 1115-1130.
[24] Sigurðsson G Ö, Rupakhety R, Rahimi S E, et al. Effect of pulse-like near-fault ground motions on utility-scale land-based wind turbines[J]. Bulletin of Earthquake Engineering, 2019, 18(3): 953-968.
[25] 赵志, 戴靠山, 毛振西, 等. 不同频谱特性地震动下风电塔破坏分析[J]. 工程力学, 2018, 35(S1): 293-299.
    Zhao Zhi, Dai Kaoshan, Mao Zhenxi, et al. Failure Analyses of a wind turbine tower under ground motions with different frequency characteristics [J]. Engineering Mechanics, 2018, 35(S1): 293-299.
[26] Zhao Z, Dai K, Lalonde E R, et al. Studies on application of scissor-jack braced viscous damper system in wind turbines under seismic and wind loads[J]. Engineering Structures, 2019, 196: 109294.1-109294.11.
[27] 刘佩. 基于贝叶斯理论的结构动力可靠度更新方法与分析[J]. 振动与冲击, 2015, 12: 29-34.
    Liu Pei. A structural dynamic reliability updating method and analysis based on Bayesian theorem[J]. Journal of Vibration and Shock, 2015, 12: 29-34.
[28] Rubinstein R, Kroese D. The cross entropy method: a unified approach to combinatorial optimization, Monte-Carlo Simulation, and machine learning[M]. New York, Springer, 2004.
[29] IEC 61400-1. Wind turbines-Part 1: Design requirements. 3rd ed[S]. Geneva, Switzerland, International Electrotechnical Commission, 2005.
[30] GB 50011-2010. 建筑抗震设计规范[S]. 北京, 中国建筑工业出版社, 2010.
    GB 50011-2010. Code for seismic design of buildings[S]. Beijing, China Architecture and Building Press, 2010.
[31] Sadowski A J, Camara A, Málaga-Chuquitaype C, et al. Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(2): 201-219.
[32] Xu Y Z, Ren Q Q, Zhang H, et al. Collapse analysis of a wind turbine tower with initial-imperfection subjected to near-field ground motions[J]. Structures, 2021, 29: 373-382.
[33] An D, Choi J-H, Kim N H. Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab[J]. Reliability Engineering & System Safety, 2013, 115: 161-169.
[34] 周颖, 吕西林. 建筑结构振动台试验模型试验方法与技术(第二版)[M]. 北京, 科学出版社, 2016.
    Zhou Ying, Lu Xilin. Method and technology for shaking table model test of building structures[M]. Beijing, Science Press, 2016.
[35] Buckingham E. On physical similar system; Illustrations of the use of dimensional equations[J]. Physical Review, 1914, 4(4): 345-376.
[36] PEER. PEER Ground Motion Database, Pacific Earthquake Engineering Research Centre. University of California: Berkeley, CA; 2012.

PDF(2223 KB)

200

Accesses

0

Citation

Detail

段落导航
相关文章

/