靶距与冲击角对超高压水射流喷嘴水动力学性能影响的研究

黄璐云1,陈正寿1,倪路新1,杜炳鑫1,陈源捷1,林森2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 169-178.

PDF(4470 KB)
PDF(4470 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 169-178.
论文

靶距与冲击角对超高压水射流喷嘴水动力学性能影响的研究

  • 黄璐云1,陈正寿1,倪路新1,杜炳鑫1,陈源捷1,林森2
作者信息 +

Effects of target distance and impact angle on hydrodynamic performance of ultra-high pressure water jet nozzle

  • HUANG Luyun1, CHEN Zhengshou1, NI Luxin1, DU Bingxin1, CHEN Yuanjie1, LIN Sen2
Author information +
文章历史 +

摘要

超高压水射流除锈是一种环保高效的除锈技术,具有能耗低、污染小、效率高等优势,在修造船行业逐渐普及应用。基于CFD(computational fluid dynamics)技术,结合空化、多相流等多种模型,同时考虑液体的可压缩性,实施了超高压水射流除锈喷嘴三维仿真计算。将靶面剪切应力和打击压强分布作为重要参量,开展不同靶距和冲击角对超高压水射流动力学性能影响的分析,阐明了靶面最大剪切应力、打击压强分布规律与靶距和冲击角的关系,得出最佳冲击角范围为10°-16°,对应的最佳靶距为20-30倍的喷嘴直径。相关研究为超高压水射流除锈喷嘴喷射参数设计提供相应参考。
关键词:超高压水射流;喷嘴;靶距;冲击角;除锈

Abstract

As one of environmentally friendly and efficient derusting techniques, ultra-high pressure water jet derusting technique has the advantages of low energy consumption, low pollution and high efficiency, and is gradually applied in the ship building and repairing industries. Based on a CFD (computational fluid dynamics) method, the 3D simulations related to ultra-high pressure water jet derusting nozzles were performed, taking the liquid compressibility, cavitation effect and multiphase flow models into account. The influences of different standoff distances and jet angles on the hydrodynamic performance of ultra-high pressure water jet were analyzed by regarding the wall shear stress and pressure distributions on the target surface as important parameters. The distribution rules of the maximum wall shear stress and wall pressure on the target surface which is attributed to variation of the standoff distance and jet angle were summarized. It is found that the optimum nozzle jet angle range is 10°-16°, corresponding to the optimal standoff distance being 20-30 times of the nozzle diameter. The related research provides reference for the characteristic parameter design of the ultra-high pressure water jet derusting nozzle.
Key words: ultra-high pressure water jet; nozzle; standoff distance; jet angle; derusting

关键词

超高压水射流 / 喷嘴 / 靶距 / 冲击角 / 除锈

Key words

ultra-high pressure water jet / nozzle / standoff distance / jet angle / derusting

引用本文

导出引用
黄璐云1,陈正寿1,倪路新1,杜炳鑫1,陈源捷1,林森2. 靶距与冲击角对超高压水射流喷嘴水动力学性能影响的研究[J]. 振动与冲击, 2022, 41(15): 169-178
HUANG Luyun1, CHEN Zhengshou1, NI Luxin1, DU Bingxin1, CHEN Yuanjie1, LIN Sen2. Effects of target distance and impact angle on hydrodynamic performance of ultra-high pressure water jet nozzle[J]. Journal of Vibration and Shock, 2022, 41(15): 169-178

参考文献

[1] 刘军壮. 高压水射流在再制造清洗中的应用[D]. 济南:山东大学,2012.
LIU Junzhuang. Research on high pressure waterjet in remanufacture cleaning[D]. Jinan:Shangdong University, 2012.
[2]  陈光明,黄旋. 基于高压水射流的船体清洗机器人关键技术分析[J]. 流体机械,2019,47(09):56-62.
CHEN Guangming, HUANG Xuan. Analysis on key technologies of ship hull cleaning robot on high pressure water jet[J]. Fluid Machinery, 2019, 47(09):56-62.
[3]  陈彦臻, 胡以怀. 船体表面附着物清洗技术的研究及应用. 表面技术[J]. 表面技术,2017,46(10):60-71.
CHEN Yanzhen, HU Yihuai. Research and application of shiphull fouling technologies[J]. Surface Technology, 2017, 46(10):60-71.
[4]  PENG H J, ZHANG P. Numerical simulation of high speed rotating water jet flow field in a semi enclosed vacuum chamber[J]. Tech Science Press, 2018, 114(1):59-73.
[5] 曹雪洁, 胡俊, 于勇. 液体可压缩性对高速射弹超空泡流的影响[J]. 兵工学报, 2020, 41(S1): 72-78.
CAO Xuejie, HU Jun, YU Yong. Effect of liquid compressibility on supercavitation flow of high-speed projectiles[J]. Acta Armamentarii, 2020, 41(S1):72-78.
[6] WEN J W, CHEN C, QI Z W, et al. Research to break oil shale with high pressure water jet based on bionic nozzle[J]. Procedia Engineering, 2014, 73:264-268.
[7] 衣正尧,弓永军,王祖温,等. 一种超高压纯水射流船舶除锈系统设计方案研究[J]. 液压与气动,2010,11:26-28.
YI Zhengyao, GONG Yongjun, WANG Zuwen, et al. A plan study on ultra-high pressure water jet system for full rust removal[J]. Chinese Hydraulics & Pneumatics, 2010, 11:26-28.
[8]  CHEN H L, LI Z M, GAO Z H, et al. Numerical investigation of rock breaking mechanisms by high pressure water jet[J]. Procedia Engineering, 2015, 126:295-299.
[9]  陈理. 空化射流喷嘴结构参数的优化[D]. 杭州:浙江工业大学,2017.
CHEN Li. Optimization of structural parameters of cavitation Jet nozzle[D]. Hangzhou:Zhejiang University of technology, 2017.
[10]  LIAO W L, DENG X Y. Study on flow field characteristics of nozzle water jet in hydraulic cutting[J]. IOP Conference Series:Earth and Environmental Science, 2017, 81(1).
[11] 程效锐, 张舒研,马亮亮,等. 高压水射流技术的应用现状与发展前景[J]. 液压气动与密封,2019,3(08):1-6.
CHEN Xiaorui, ZHANG Shuyan, WANG Liangliang, et al. The application status and development prospects of high pressure water jet technology[J]. Hydraulics Pneumatics & Seals, 2019, 3(08):1-6.
[12] 韩启龙,马洋. 喷嘴结构对高压水射流影响及结构参数优化设计[J]. 国防科技大学学报,2016,38(03):68-74.
HAN Qilong, MA Yang. Influence of nozzle strcture on high pressure water jet and optimization design of nozzle structure parameter[J]. Journal of National University of Defense Technology, 2016, 38(03):68-74.
[13]  刘庭成, 程骏,刘永荣. 高压水射流流动过程中能量损失的分析. 清洗世界[J],2004,05:9-11.
LIU Tingcheng, CHEN Jun, LIU Yongrong. Analysis on the   energy loss in the flowing process of high pressure water jet. Cleaning World[J]. 2004, 05:9-11.
[14] WEN J W, CHEN C. Optimizing the structure of the straight cone nozzle and the parameters of borehole hydraulic mining for huadian oil shale based on experimental research[J]. Multidisciplinary Digital Publishing Institute , 2017, 10(12).
[15] 赵伟民,冯欣华,胡长胜. 不同收缩角对喷嘴性能影响的数值模拟[J]. 矿山机械,2007,05:112-114.
ZHAO Weiming, FENG Xinhua, HU Changsheng. Numerical simulation of the effect of different shrinkage angles on nozzle performance[J]. Mining & Processing Equipment, 2007, 05:112-114.
[16] 杨文志,安文斌,王建英. 高压水射流喷嘴不同轮廓曲线 的设计优化[J]. 煤矿机械,2019,40(10):117-121.
YANG Zhiwen, AN Wenbin, WANG Jianying. Design and optimization of different contour curves of high pressure water jet nozzle[J]. Coal Mine Machinery, 2019, 40(10):117-121.
[17] 丁堃. 高压水射流圆柱形喷嘴喷射参数研究[D]. 大连:大连交通大学,2017.
DING Kun. Research on injection parameters of cylindrical nozzles applied in high-pressure water jet[D]. Dalian:Dalian Jiaotong University, 2017.
[18] 王丽萍, 蔡晓君,窦艳涛,等. 高压水射流清洗参数实验研究[J]. 实验室研究与探索, 2017, 36(08): 48-51.
WANG Liping, CAI Xiaojun, DOU Yantao, et al. Experimental research of high pressure water jet cleaning parameters[J]. Research and Exploration in Laboratory, 2017, 36(8):48-51.
[19]  屈长龙, 王喜顺. 基于FLUENT的高压水射流除锈的流场仿真及射流参数优化[D]. 机械与电子, 2016, 34(02) :24-27.
QU Changlong, WANG Xishun. Jet flow simulation and parameters optimization of high pressure water jet for derusting based on fluent[D]. Machinery & Electronics, 2016, 34(02):24-27.
[20] 陈伟. 高压水射流自进式喷头自进能力分析及参数优化[D]. 成都:西南石油大学,2018.
CHEN Wei. Analysis and parameter optimization of the self-advancing capability of the high-pressure water jet self-advancing sprinkler[D]. Chengdu:Southwest Petroleum University, 2018.
[21] 芈绍桂, 罗银川, 李风雨,等. 射流速度和冲击角度对材料去除特性的分析[J].光学技术, 2016, 42(02):161-165.
MI Shaogui, LUO Yinchuan, LI Fengyu, et al. Analysis of jet velocity and impinging angle on material removal characteristic in fluid jet polishing[J]. Optical Technique, 2016, 42(02):161-165.
[22] NI L X, CHEN Z S. Hydrodynamic analysis of ultra-high pressure water derusting nozzle[J]. International Society of Offshore and Polar Engineer, 2020.
[23] 沈娟. 高压水射流喷嘴的设计及其结构优化[D]. 苏州市:苏州大学,2014.
SHEN Juan. High pressure water jet nozzle design and structural optimization[D]. Soochow:Soochow University, 2014.
[24] 薛胜雄. 超高压水射流自动爬壁除锈机理与成套设备[D]. 杭州:浙江大学,2004.
XUE Shengxiong. Studies on the removal rust forming by UHP waterjetting auto-robot and its unit technology[D]. Hangzhou:Zhejiang University, 2004.
[25] 吴持恭. 水力学(第四版)[M]. 高等教育出版社.
WU Chigong. Hydraulic Experiment(Fourth Edition)[M]. Higher Education Press:2007.
[26] 蔡毅,苏国兵.高压水射流流线型喷嘴正交试验与仿真研究[J]. 煤炭技术,2017,36(12):299-302.
CAI Yi, SU Guobing. Study on orthogonal experiment and simulation of high pressure water get streamline nozzle. Coal Technology, 2017, 36(12):299-302.
[27] 施春燕,袁家虎,伍凡,等.冲击角度对射流抛光中材料去除面形的影响分析[J].光学学报,2010,30(02):513-517.
SHI Chunyan, YUAN Jiahu, WU Fan, el al. Influence analysis of impact angle on material removal profile in fluid jetPolishing[J]. Act Optica Sinica, 2010, 30(02):513-517.
 

PDF(4470 KB)

262

Accesses

0

Citation

Detail

段落导航
相关文章

/