超弹塑性泡沫连续冲击动力学行为分析的新方法

卢富德1,任梦成1,高德2,奚德昌2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 196-200.

PDF(1342 KB)
PDF(1342 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 196-200.
论文

超弹塑性泡沫连续冲击动力学行为分析的新方法

  • 卢富德1,任梦成1,高德2,奚德昌2
作者信息 +

A new method for analyzing dynamic behavior of hyper-elastoplastic foam under continuous impact

  • LU Fude1, REN Mengcheng1, GAO De2, XI Dechang2
Author information +
文章历史 +

摘要

提出了一个用于表征泡沫非线性卸载与残余变形力学行为的简单方法。结合超弹本构模型与弹塑性本构模型,把塑料泡沫看成由相同横截面积但不同厚度的超弹层与弹塑性层两层叠置而成。两层结构有相同的加载力学行为,表现为线弹性、屈服平台与压实三个阶段,但两层呈现不同的卸载性能。超弹层按照MULLINS效应规律进行卸载,弹塑性层按照线弹性力学行为进行卸载。然后基于EPS的单轴压缩试验结果,获得了超弹层与弹塑性层本构模型中9个参数的结果,这些参数能够同时表征非线性卸载与残余变形力学行为。最后利用两层的本构模型预测了EPS连续多次(3次)冲击动力学响应,试验结果与理论计算结果良好的吻合性证实了本文所提出的方法的有效性。
关键词:非线性卸载;残余变形;超弹本构;弹塑性本构;连续多次冲击

Abstract

A simple method is presented to characterize the nonlinear unloading and residual deformation behavior of foams. Combined with hyperelastic constitutive model and elastoplastic constitutive model, plastic foam is considered to be composed of two layers of hyperlastic layer and elastic plastic layer from the same cross-sectional area but different thickness. The two layers have the same loading behavior, which are linear elasticity, yield platform and compaction. However, the unloading performances of the two layers are different, while hyperelastic layer is unloaded according to the Mullins effect law, and the elastic-plastic layer is unloaded according to the linear elastic mechanical behavior, respectively. Then, based on the results of EPS uniaxial compression test, the results of 9 parameters in the constitutive model of hyperelastic layer and elastic-plastic layer are obtained. These parameters can simultaneously characterize the mechanical behavior of nonlinear unloading and residual deformation. Finally, the dynamic response of EPS is predicted by using two-layer constitutive model. The experimental results are consistent with the theoretical results to confirm the effectiveness of the proposed method.
Key words: nonlinear unloading; residual deformation; hyperelastic constitutive; elastoplastic constitutive; consecutive multiple impacts

关键词

非线性卸载 / 残余变形 / 超弹本构 / 弹塑性本构 / 连续多次冲击

Key words

nonlinear unloading / residual deformation / hyperelastic constitutive / elastoplastic constitutive / consecutive multiple impacts

引用本文

导出引用
卢富德1,任梦成1,高德2,奚德昌2. 超弹塑性泡沫连续冲击动力学行为分析的新方法[J]. 振动与冲击, 2022, 41(15): 196-200
LU Fude1, REN Mengcheng1, GAO De2, XI Dechang2. A new method for analyzing dynamic behavior of hyper-elastoplastic foam under continuous impact[J]. Journal of Vibration and Shock, 2022, 41(15): 196-200

参考文献

[1] Navarro-Javierre P, De-La-Cruz-Navarro E. Evaluation of two simplified methods for determining cushion curves of closed cell foams[J]. Packaging Technology & Science, 2012, 25(4):217–231.
[2] Piatkowski T , Osowski P. Modified method for dynamic stress‐strain curve determination of closed‐cell foams[J]. Packaging Technology & Science,2016,29(6):337-349.
[3] Rumianek P ,Dobosz  T, Nowak R, et al. Static mechanical properties of expanded polypropylene crushable foam[J].Materials,2021,14(2):1-15.
[4] Sergi C, Sarasini F, Barbero E, et al. Assessment of agglomerated corks and PVC foams cores crashworthiness under multiple-impact events in different loading conditions[J]. Polymer Testing, 2021, 96:107061
[5] Kiernan S, Gilchrist MD. Towards a virtual functionally graded foam: Defining the large strain constitutive response of an isotropic closed cell polymeric cellular solid[J]. International Journal of Engineering Science, 2010, 48(11):1373-1386.
[6] Bocciarelli M , Carvelli V , Mariani S , et al. Assessment of the shock adsorption properties of bike helmets: a numerical/experimental approach[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23(4):1-13.
[7] Lu F-D, Tao W-M, Gao D. Virtual mass method for solution of dynamic response of composite cushion packaging system. Packaging Technology & Science ,2013; 26(S1):32–42.
[8] Jeong KY. Constitutive modeling of polymeric foams having a four-parameter modulus function with strain rate sensitivity. Journal of Mechanical Science & Technology,2016 ;30(2):683-688.
[9]王立军, 张岩, 王志伟. 循环压缩和冲击下聚氨酯发泡塑料的能量吸收[J]. 振动与冲击, 2015, 34(5):44-44.
Wang Lijun, Zhang Yan, Wang Zhiwei. Energy absorption of polyurethane foam under cyclic compression and impact [J].Journal of Vibration and impact, 2015, 34 (5): 44-44
[10] Hammou A D , Duong P M , B Abbès, et al. Finite-element simulation with a homogenization model and experimental study of free drop tests of corrugated cardboard packaging[J]. Mechanics and Industry, 2012, 13(3):175-184.
[11] Zhang X-F, Andrieux F, Sun D -Z. Pseudo-elastic description of polymeric foams at finite deformation with stress softening and residual strain effects. Mater Design,2011;32(2):877-884.
[12] Skrlec A , Klemenc J , Fajdiga M . Parameter identification for a low-density-foam material model using numerical optimisation procedures[J]. Engineering Computations, 2014, 31(7):1532-1549.
[13]  Ozturk UE, Anlas G. Finite element analysis of expanded polystyrene foam under multiple compressive loading and unloading[J]. Material and Design,2011,32(2):773-780.
[14]  LU F D, HUA GJ, WANG LS, et al. A phenomenological constitutive modelling of polyethylene foam under multiple impact conditions[J]. Packaging Technology and Science,2019,32(7):367-379.
[15]卢富德,滑广军,王丽姝,等. 梯形聚乙烯泡沫结构动态压缩响应有限元分析[J]. 振动与冲击, 2019, 38(14): 234-238
Lu Fude, Guang Guang Jun, Wang Lishu, et al. Finite element analysis of dynamic compression response of trapezoid shaped polyethylene foam structure [J].Journal of  vibration and impact, 2019, 38 (14): 234-238

PDF(1342 KB)

263

Accesses

0

Citation

Detail

段落导航
相关文章

/