为研究活性粉末混凝土(RPC)-钢管混凝土(CFST)组合柱的轴压力学性能,以RPC厚度、长细比为参数,进行了5根RPC-CFST组合柱的轴压试验,分析其受力机理、破坏形态、套箍效应和承载力算法等。试验结果表明:不同参数的RPC-CFST组合柱破坏过程和破坏形态较为接近,随着RPC厚度的增加,外部RPC对CFST的紧箍效应更迟出现,组合柱的极限承载力有小幅度提升;随着长细比的增大,外部RPC对CFST的紧箍效应越早出现,组合柱的弹性刚度和极限承载力逐渐降低。借助ABAQUS有限元软件,建立了经试验验证的RPC-CFST组合柱有限元模型,并对径厚比、RPC强度、含钢率、混凝土强度、套箍系数等参数进行分析。在试验研究和有限元参数分析的基础上,借鉴钢管混凝土结构技术规范和规程,提出了RPC-CFST组合柱轴压承载力计算公式,公式计算值与试验值吻合良好。
关键词:活性粉末混凝土;钢管混凝土;组合柱;静载试验;有限元;承载力
Abstract
In order to study the axial compressive mechanical properties of reactive powder concrete ( RPC ) -concrete filled steel tube ( CFST ) composite columns, five RPC-CFST composite columns were tested under axial compression with RPC thickness and slenderness ratio as parameters. The mechanical mechanism, failure mode, confinement effect and bearing capacity algorithm were analyzed. The test results show that the failure process and failure mode of RPC-CFST composite columns with different parameters are close. With the increase of RPC thickness, the confining effect of external RPC on CFST appears later, and the ultimate bearing capacity of composite columns increases slightly. With the increase of slenderness ratio, the earlier the confining effect of external RPC on CFST occurs, the elastic stiffness and ultimate bearing capacity of composite columns gradually decrease. With the help of ABAQUS finite element software, the finite element model of RPC-CFST composite columns verified by experiments was established, and the parameters such as diameter-thickness ratio, RPC strength, steel ratio, concrete strength and confinement coefficient were analyzed. On the basis of experimental research and finite element parameter analysis, the calculation formula of axial compression bearing capacity of RPC-CFST composite column is proposed by referring to the technical specifications and regulations of concrete filled steel tubular structure. The calculated value of the formula is in good agreement with the experimental value.
Keywords:reactive powder concrete(RPC); concrete-filled steel tube(CFST); composite column; axial compression; finite element; bearing capacity
关键词
活性粉末混凝土 /
钢管混凝土 /
组合柱 /
静载试验 /
有限元 /
承载力
{{custom_keyword}} /
Key words
reactive powder concrete(RPC) /
concrete-filled steel tube(CFST) /
composite column /
axial compression /
finite element /
bearing capacity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 丁红岩,杜闯,张浦阳. 新型预制管混凝土柱抗震性能试验 [J]. 哈尔滨工程大学学报,2017,38(4):538-544.
Ding Hongyan, Du Chuang, Zhang Puyang. Experimental investigation of seismic behavior of new concrete-filled precast tubular column [J]. Journal of Harbin Institute of Technology, 2017, 38(4): 538-544.
[2] 徐礼华,徐鹏,侯玉杰等. 多边多腔钢管自密实高强混凝土短柱轴心受压性能试验研究 [J]. 土木工程学报,2017,50(1):37-45.
Xu Lihua, Xu Peng, Hou Yujie, et al. Experimental study on axial compression behavior of short polygonal multi-cell and self-compacting high-strength CFST columns [J]. China Civil Engineering Journal, 2017, 50(1): 37-45.
[3] 田宇. 圆钢管混凝土短柱轴压性能尺寸效应试验研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
Tian Yu. Experimental research on size effect of concrete-filled steel tubular stub columns under axial compressive load [D]. Harbin: Harbin Institute of Technology, 2014.
[4] 陈鹏. 圆钢管混凝土轴压短柱尺寸效应研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018.
Chen Peng. Research on size effect of axially loaded circular concrete-filled steel tubular stub column [D]. Harbin: Harbin Institute of Technology, 2018.
[5] 廖飞宇,韩林海. 方形钢管混凝土叠合柱的力学性能研究 [J]. 工程力学,2010,27(4):153-162.
Liao Feiyu, Han Linhai. Performance of concrete-filled steel tube reinforced concrete columns with square sections [J]. Engineering Mechanics,2010,27(4):153-162.
[6] 田甜. 钢管混凝土组合桥墩抗震性能研究 [D]. 大连: 大连理工大学,2019.
Tian Tian. Research on seismic behavior of steel tube reinforced concrete bridge columns [D]. Dalian: Dalian University of Technology, 2019.
[7] Qu X , Chen Z , Sun G. Experimental study of rectangular CFST columns subjected to eccentricloading [J]. Thin-Walled Structures, 2013,64:83-93.
[8] Susantha K A S,Ge H,Usami T. Uniaxial stress-strain relationship of concrete confined byvarious shaped steel tubes [J]. Engineering Structures,2001,23 (10):1331-1347.
[9] Qu X , Chen Z , Sun G . Experimental study of rectangular CFST columns subjected to eccentricloading [J]. Thin-Walled Structures, 2013,64:83-93.
[10] 文成伍. 锈蚀方钢管再生混凝土长柱双向偏压承载性能研究 [D]. 绵阳: 西南科技大学,2021.
Wen Chengwu. Study on biaxial bias loading behavior of corroded RACFST slender columns [D]. Mianyang: Southwest University of Science and Technology, 2021.
[11] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述・2014 [J]. 中国公路学报,2014,27(5):1-96.
Ediorial Department of Chinese Jounal of Highways and Transport, Summary of academic research on chinese bridge engineering・2014 [J]. China Journal of Highway and Transport,2014,27(5):1-96.
[12] 陈以一,王伟,周锋. 钢管结构—新需求驱动的形式拓展和性能提升[J]. 建筑结构学报,2019,40(3):1-20.
Chen Yiyi, Wang Wei, Zhou Feng. Steel tubular structures: configuration innovation and performance improvement driven by new requirements [J]. Journal of Building Structures, 2019, 40(3): 1-20.
[13] 蔡景明. 钢筋增强ECC—钢管混凝土组合柱的力学性能研究 [D]. 南京: 东南大学, 2018.
Cai Jingming. The mechanical behavior of steel reinforced ECC encased CFST columns [D]. Nanjing: Southeast University, 2018.
[14] ROUX N,ANDRADE C,SANJUAN MA. Experimentalstudy of durability of reactive powder concretes [J]. Journalof Materials in Civil Engineering,1996,8(2): 1-6.
[15] 王德弘,鞠彦忠,郑文忠. 钢筋活性粉末混凝土框架节点抗震性能试验研究 [J]. 振动与冲击,2018,37(6):149-156.
Wang Dehong, Ju Yanzhong, Zheng Wenzhong. Experimental research on the seismic performance of reinforced reactive powder concrete frame joints [J]. Journal of Vibration and Shock, 2018, 37(6): 149-156.
[16] GB/T228.1-2010金属材料拉伸试验:第1部分:室温试验方法[S] . 北京:中国标准出版社,2010.
Metallic materials: tensile testing; part 1: method of test at room temperature: GB/T 228.1-2010 [S]. Beijing: Standards Press of China 2010.
[17] 混凝土物理力学性能试验方法标准:GB/T50081-2019 [S]. 北京:中国建筑工业出版社,2019.
Standard of test methods of concrete physical and mechanical properties: GB/T 50081-2019 [S]. Beijing: China Architecture & Building Press,2019.
[18] GB/T31387-2015活性粉末混凝土[S].
GB/T 31387-2015 Reactive powder concrete[S].
[19] 杜明军. 钢与混凝土组合结构节点及构件数值分析方法研究 [D].天津: 天津大学,2009.
Du Mingjun. Study on numerical analysis methods for joints and members of steel-concrete composite structures [D]. Tianjin: Tianjin University, 2009.
[20] 沈涛. 活性粉末混凝土单轴受压本构关系及结构设计参数研究 [D].哈尔滨: 哈尔滨工业大学,2014.
Shen Tao. Constitutive relationship of reactive powder concrete under uni-axial compression and research on paramenter of structural design [D]. Harbin: Harbin Institute of Technology, 2014.
[21] 杨志慧. 不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究[D]. 北京: 北京交通大学,2006.
Yang Zhihui. Study on tension mechanical performance of reactive powder concrete in different steel fiber volume fractions[D]. Beijing: Beijing Jiaotong University, 2006.
[22] 韩林海. 钢管混凝土结构-理论与实践(第3版) [M]. 北京: 科学出版社,2016.
HAN Linhai. Concrete filled steel tubular structures-theory and practice (Third Edition) [M]. Beijing: Science Press,2016.
[23] 吴炎海,林震宇. 钢管活性粉末混凝土轴压短柱受力性能试验研究 [J]. 中国公路学报,2005(1):61-66.
Wu Yanhai, Lin Zhenyu. Experimental study of behavior on RPC filled steel tubular stub columns under axial compression [J]. China Journal of Highway and Transport, 2005(1): 61-66.
[24] 安钰丰. 方形钢管混凝土叠合压弯构件力学性能和设计方法研究 [D]. 北京: 清华大学,2015.
An Yufeng. Performance and Design Method of Square Concrete-encased CFST Members under Combined Compression and Bending [D]. Beijing: Tsinghua University, 2015.
[25] 钢管混凝土结构技术规范: GB 50936-2014 [S]. 北京:中国建筑工业出版社,2014.
Technical code for concrete filled steel tubular structures: GB 50936-2014 [S]. Beijing: China Architecture & Building Press,2014.
[26] 钢管混凝土结构技术规程: CECS28: 2012 [S]. 北京:中国计划出版社,2012.
Technical specification for concrete-filled steel tubular stuctures: CECS 28.2012 [S]. Beijing: China Planning Press,2012.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}