基于分数阶黏弹性模型的混凝土阻尼频率相关性研究

梅生启1,2,李韶华1,李鹏飞3,徐浩然2,张元昊2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 201-208.

PDF(2160 KB)
PDF(2160 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 201-208.
论文

基于分数阶黏弹性模型的混凝土阻尼频率相关性研究

  • 梅生启1,2,李韶华1,李鹏飞3,徐浩然2,张元昊2
作者信息 +

Fractional order viscoelastic model reflecting correlation between concrete material damping and load frequency based on multi-sample data

  • MEI Shengqi1,2, LI Shaohua1, LI Pengfei3, XU Haoran2, ZHANG Yuanhao2
Author information +
文章历史 +

摘要

阻尼作为反映耗能特征的参数,对动态荷载下结构响应有重要影响。针对强迫振动条件下循环荷载形式对混凝土材料阻尼的影响,本文结合普通混凝土试验数据并收集152组文献测试结果,详细分析了混凝土材料阻尼与荷载频率的相关性。发现在低频范围时(<3.0Hz),混凝土材料阻尼均随荷载频率增大呈非线性降低,与经典整数阶黏弹性模型计算规律不符。基于分数阶微积分理论对经典整数阶模型的导数阶数进行改进(0<导数阶数<1),发现修正后分数阶模型能够更好反映混凝土材料阻尼与循环荷载频率在低频时的非正相关性,导数阶数小于0.12,表明混凝土呈现弱黏弹性效应,为混凝土动态性能分析提供一种新的模型选择和参数参考。
关键词:混凝土阻尼;频率相关性;分数阶微积分;黏弹性理论

Abstract

As a parameter reflecting the energy dissipation characteristics of a structure, damping has an important effect on dynamic response analysis. For the damping frequency coherence of concrete under the condition of forced vibration, there is no unified conclusion. In this paper, the damping data of 152 groups of concrete materials  are firstly analyzed. It is found that in the range <3.0Hz, the damping of concrete materials decreases nonlinearly with the increase of frequency, but the statistical results are discrete. Then the classical viscoelastic model and fractional viscoelastic model were used to analyze the frequency correlation of energy dissipation. In order to determine the effectiveness of fractional order model, the test data of ordinary concrete are further compared and analyzed. It is found that the experimental results show that the damping nonlinearity decreases with the increase of frequency, and the fractional-order model can better reflect the energy dissipation characteristics of concrete materials, which provides a reference for the application of fractional-order calculus in the dynamic performance analysis of concrete.
Keyword: Concrete material damping; Frequency correlation; Fractional calculus; Viscoelastic theory

关键词

混凝土阻尼 / 频率相关性 / 分数阶微积分 / 黏弹性理论

Key words

Concrete material damping / Frequency correlation / Fractional calculus / Viscoelastic theory

引用本文

导出引用
梅生启1,2,李韶华1,李鹏飞3,徐浩然2,张元昊2. 基于分数阶黏弹性模型的混凝土阻尼频率相关性研究[J]. 振动与冲击, 2022, 41(15): 201-208
MEI Shengqi1,2, LI Shaohua1, LI Pengfei3, XU Haoran2, ZHANG Yuanhao2. Fractional order viscoelastic model reflecting correlation between concrete material damping and load frequency based on multi-sample data[J]. Journal of Vibration and Shock, 2022, 41(15): 201-208

参考文献

[1] Lalanne M. Review: Modeling damping in mechanical engineering structures[J]. Shock and Vibration, 2000, 7(4):263-263.
[2] Puthanpurayil A M , Dhakal R P , Carr A J . Modelling of in-structure damping: a review of the state-of-the-art[C]// Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society, Auckland, New Zealand: PCEE2011, 2011.
[3] 本刊综合.虎门大桥振动原因初步查明[J].中国公路学报,2020, 10(4):26.
The cause of vibration of Humen Bridge has been identified[J]. China Journal of Highway and Transport, 2020, 10(4):26. (in Chinese)
[4] 中华人民共和国交通运输部. 公路桥梁抗震设计细则: JTG/T B02-01-2008 [S]. 北京:人民交通出版社, 2008.
Ministry of Transport of The People’s Republic of China. Guidelines for seismic design of highway bridges: JTG/T B02-01-2008 [S].Beijing: China Communications Press Co.,Ltd., 2008.(in Chinese)
[5] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB50011-2010 [S]. 北京:中国建筑工业出版社,2010.
Ministry of Housing and Urban-Rural Development of The People’s Republic of China. Code for seismic design of buildings: GB 50011-2010 [S] Beijing: China Architecture Publishing & Media Co.,LItd.2010.(in Chinese)
[6] European Committee for Standardization. Eurocode 8: Design of Structures for Earthquake Resistance: EN.1998.1.2004[S]. Brussels, Comité Européen de Normalisation, 2004.
[7] California Department of Transportation. Caltrans Seismic Design Criteria: SDC 1.6-2010 [S]. Califonia, California Department of Transportation, 2010.
[8] Newmark N M, Hall W J. Seismic design criteria for nuclear reactor facilities [C].// Proceedings of Fourth World Conference on Earthquake Engineering, Santiago: PFWCWW, 1969.
[9] 刘铁军,欧进萍.高阻尼混凝土框架的动力特性与抗震试验[J].地震工程与工程振动, 2008, 28(2):72-76.
LIU Tiejun OU Jinping. Experiments on dynamic properties of concrete frame models with high damping ratios[J]. Earthquake Engineering and Engineering Vibration 2008, 28(2):72-76. (in Chinese)
[10] 汪梦甫,宋兴禹.高阻尼混凝土构件阻尼性能研究[J].振动与冲击,2012,31(11): 173-179.
WANG Mengfu, SONG Xingyu. Damping property of high damping concrete members[J]. Journal of Vibration and Shock, 2012, 31(11): 173-179.(in Chinese)
[11] Chung D D L. Structural composite materials tailored for damping[J]. Journal of Alloys and Compounds, 2003, 355(1): 216-223.
[12] Kimball A L, Lovell D E. Internal friction in solids[J]. Physical Review, 1927, 30 (6): 948- 959.
[13] R.克拉夫,J.彭津.王光远等译. 结构动力学(修订版) [M]. 北京:高等教育出版社,2006.
R W Clough, J Penzien. Structural Dynamics[M]. McGrowHill Inc, New York, 1975.
[14] Anil K.Chopra著. 谢礼立,吕大刚等译. 结构动力学:理论及其在地震工程中的应用[M]. 北京:高等教育出版社, 2007.
Anil K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering [M]. 2007.
[15] Zhang Z, Wang P, Wu J. Study of the mechanical damping behavior of SBR-modified cement pastes by dynamic mechanical analyzer[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1135-1141.
[16] 梁超锋, 刘铁军, 邹笃建,等. 材料黏滞系数与损耗因子的频率相关性研究[J]. 力学学报, 2012, 44(5):933-937.
LIANG Chaofeng, LIU Tiejun, ZOU Dujian, et al. The Frequency-dependent study on viscosity coefficient and loss tangent of viscoelastic materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 933-937.(in Chinese)
[17] Mei S Q, Su L, Li P F, et al. Material damping of concrete under cyclic axial compression[J]. Journal of Materials in Civil Engineering, 2018, 30(3): 04017295.
[18] Schiessel H, Blumen A. Hierarchical analogues to fractional relaxation equations[J]. Journal of Physics A: Mathematical and General, 1999, 26(19):50-57.
[19] Bagley R L, Torvik J. Fractional calculus-A different approach to the analysis of viscoelastically damped structures[J]. AIAA journal, 1983, 21(5): 741-748.
[20] Jia J H, Shen X Y, Hua H X. Viscoelastic behavior analysis and application of the fractional derivative Maxwell model[J]. Journal of Vibration and Control, 2007, 13(4): 385-401.
[21] 欧进萍,刘铁军,梁超锋,等.复合纤维增强混凝土阻尼测试装置开发与试验研究[J].实验力学,2006,21(4): 403- 410.
OU Jinping , LIU Tiejun , LIANG Chaofeng, et al. Development of damping measuring instrument and experimental research for hybrid fiber reinforced concretes [J]. Journal of Experimental Mechanics, 2006, 21 (4): 403- 410. (in Chinese)
[22] 苏力.混凝土静动态黏弹性性能的理论及试验研究[D]. 北京:北京交通大学, 2017.
SU Li. Experimental and Theoretical Investigation on the Static and Dynamic Viscoelastic Behavior of Concrete[D]. Beijing Jiaotong University, Beijing, 2017.(in Chinese)
[23] 何明明,李宁,陈蕴生,等. 基于分数阶微积分岩石的动态变形行为研究[J]. 岩土工程学报, 2015, 37(s1):178-184.
HE Mingming, LI Ning, CHEN Yunsheng, et al. Dynamic deformation behavior of rock based on fractional order calculus [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1):178-184.(in Chinese)
[24] 赵永玲,侯之超. 基于分数导数的橡胶材料两种黏弹性本构模型[J]. 清华大学学报(自然科学版), 2013, 53 (3): 378-383.
ZHAO Yongling, HOU Zhichao. Two viscoelastic constitutive models of rubber materials using fractional derivations[J]. Journal of Tsinghua University (Science and Technology), 2013, 53 (3): 378-383.(in Chinese)
[25] 朱俊涛,徐赵东. 基于分数阶导数的磁流变弹性体参数模型[J]. 工程力学, 2012, 29(8): 45-49.
ZHU Juntao, XU Zhaodong. The parameter model of magnetorheological elastomers based on fractional derivative[J]. Engineering Mechanics, 2012, 29(8): 45-49. (in Chinese)
[26] Jordan R. W. The effect of stress, frequency, curing, mix and age upon the damping of concrete[J]. Magazine of Concrete Research. 1980, 113 (32): 195-205.
[27] 梁超锋,刘铁军,邹笃建,等.再生混凝土材料阻尼性能研究[J]. 振动与冲击, 2013, 32 (9): 160-164.
LIANG Chaofeng, LIU Tiejun, ZHOU Dujian, et al. Damping capacity of recycled concrete [J]. Journal of Vibration and Shock, 2013, 32 (9):160-164.(in Chinese)
[28] Chen X, Huang Y, Chen C, et al. Experimental study and analytical modeling on hysteresis behavior of plain concrete in uniaxial cyclic tension[J]. International Journal of Fatigue, 2017, 96: 261-269.
[29] 董军,邓洪洲,王肇民. 结构动力分析阻尼模型研究[J]. 世界地震工程, 2000, 16(4): 63-69.
DONG Jun, DENG Hongzhou, WANG Zhaomin. Studies on the damping models for structural dynamic time history analysis[J] World Earthquake Engineering, 2000, 16(4): 63-69.
[30] Li Q S, Xiao Y Q, Wong C K, et al. Field measurements of typhoon effects on a super tall building[J]. Engineering Structures, 2004, 26 (2): 233-244.

PDF(2160 KB)

346

Accesses

0

Citation

Detail

段落导航
相关文章

/