建立了考虑燃烧室截面面积变化的纵向一维声振方程,有限差分数值求解纵向声模态,通过变截面燃烧室模拟试验件声模态试验验证了本文数值方法的准确性。研究结果表明:与等截面工况相比,变截面工况下纵向声模态频率第n阶(n>1)纵向声模态频率fn与 1阶基频f1间倍数关系是 ;奇数阶振型关于纵向长度的中点不再保持反对称,偶数阶振型关于纵向长度的中点不再保持对称;在燃烧室截面变化最为剧烈的发动机初始工作阶段,纵向声模态分析必须考虑截面变化的影响。
关键词:声模态,变截面,固体火箭发动机,燃烧室,纵向
Abstract
1-D longitudinal acoustic model of solid rocket motor chamber with non-uniform cross-section was founded. Longitudinal acoustic modal of chambers with non-uniform cross-section were solved by finite difference method and validated in respect of accuracy with acoustic modal test of chamber test pieces. Results shown that compared with chambers with uniform cross-section, the multiple between n-th(n>1) and 1st order frequency(fn and f1) of chambers with non-uniform cross-section is ; odd and even order mode shape are not asymmetrical and symmetrical respectively about middle point of longitudinal length; analysis of longitudinal acoustic modal must consider the obviously varying cross-section at the initial working stage of solid rocket motor.
Keywords: acoustic modal,non-uniform cross-section,solid rocket motor,chamber,longitudinal
关键词
声模态 /
变截面 /
固体火箭发动机 /
燃烧室 /
纵向
{{custom_keyword}} /
Key words
acoustic modal /
non-uniform cross-section /
solid rocket motor /
chamber /
longitudinal
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘佩进,何国强. 固体火箭发动机燃烧不稳定及控制技术[M].西安:西北工业大学出版社,2015.
[2] F.S. Blomshield. Lessons Learned In Solid Rocket Combustion Instability[C]. AIAA 2007-5803.
[3] Y. Fabignon, J. Dupays, G. Avalon, et al. Instabilities and pressure oscillations in solid rocket motors[J]. Aerospace Science and Technology, 2003, 55(7): 191–200.
[4] M. Golafshani, M. Farshchi, and H. Ghassemi. Effects of Grain Geometry on Pulse-Triggered Combustion Instability in Rocket Motors[J]. Journal of Propulsion and Power, 2002, 18(1): 123-130.
[5] 唐金兰,刘佩进. 固体火箭发动机原理[M]. 北京:国防工业出版社,2013.
[6] 苏万兴,李世鹏,张峤,等. 某固体火箭发动机工作末期不稳定燃烧[J]. 航空动力学报,2013,28(10):2376-2383.
Su Wanxing, Li Shipeng, ZHANG Qiao, et al. Combustion instability at end of buring in a solid rocket motor[J]. Journal of Aerospace Power, 2013, 28(10): 2376-2383.
[7] 杨向明,刘佩进,陈晓龙. 翼柱型装药固体火箭发动机燃烧室声场分析[J]. 宇航学报,2008,29(5):1593-1597.
Yang Xiangming, Liu Peijin, Chen Xiaolong. Analyse of Acoustic Property with Complicated Grain Shape In Combustion Chamber of Solid Rocket Motor[J]. Journal of Astronautics, 2008, 29(5): 1593-1597.
[8] 乐浩,王英诚,薛牧遥,等. 双脉冲固体火箭发动机燃烧室声腔特性仿真分析与试验研究[J]. 上海航天,2019,36(S1):35-42.
Le Hao, Wang Yingcheng, Xue Muyao, et al. Simulation Analysis and Experimental Study On Acoustic Property of Dual Pulse Solid Rocket Motor Combustion Chamber[J]. Aerospace Shanghai, 2019, 36(S1): 35-42.
[9] C. Carmicino, and D. Pastrone. An Analytical Model to Predict Longitudinal Acoustic Modes Frequency of Hybrid Rockets Combustion Chamber[C]. AIAA 2017-4645.
[10] J. X. Li, D. B. Wang, and A. S. Morgans. Analytical solutions of acoustic field in annular combustion chambers with non-uniform cross-sectional surface area and mean flow[J]. Journal of Sound and Vibration, 2021, 506(116175): 1-12.
[11] S. R. Yeddula, and A. S. Morgans. A semi-analytical solution for acoustic wave propagation in varying area ducts with mean flow[J]. Journal of Sound and Vibration, 2021, 492(115770): 1-19.
[12] 蔡建程,谢新俊,M. Ievgen,等. 管道不可压缩流动压力脉动(伪声)的数值研究[J]. 振动与冲击,2021,40(14):10-17.
Cai Jiancheng, Xie Xinjun, M. Ievgen, et al. Numerical study on the hydraulic pressure fluctuations (pseudo-sound) of incompressible flows in pipes[J]. Journal of Vibration and Shock, 2021, 40(14): 10-17.
[13] 赵天泉,张翔宇,甘晓松. 固体火箭发动机声能共振规律试验研究[J]. 振动与冲击,2021,40(13):82-87.
Zhao Tianquan, Zhang Xiangyu, Gan Xiaosong. Tests for sound energy resonance law of solid rocket engins[J]. Journal of Vibration and Shock, 2021, 40(13): 82-87.
[14] Chen G D, Wang Z C. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components[J]. Mechanical Systems and Signal Processing, 2012, 28: 258-279.
[15] M. Feldman. Hilbert transform in vibration analysis[J]. Mechanical Systems and Signal Processing, 2011, 25: 735-802.
[16] M. Feldman. Non-linear system vibration analysis using Hilbert Transform I. Free vibration analysis method ‘freevib’. Mechanical Systems and Signal Processing, 1994, 8(2): 119-127.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}