网架结构单点冲击激励的数学模型与数值分析

邹韬,蔡晓丽,伍晓顺

振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 77-82.

PDF(864 KB)
PDF(864 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 77-82.
论文

网架结构单点冲击激励的数学模型与数值分析

  • 邹韬,蔡晓丽,伍晓顺
作者信息 +

Mathematical model and numerical analysis of single point impact excitation of space truss structure

  • ZOU Tao, CAI Xiaoli, WU Xiaoshun
Author information +
文章历史 +

摘要

为了解决网架结构的主动激振难题,提出一种基于重物坠落的冲击激励新方法。将由重物、绳索和结构构成的复杂振动系统简化后,建立模拟单点冲击激励的单自由度等效振动方程,最终得到单点冲击力时程的数学表达式。将冲击力时程施加于结构便可以模拟单点冲击激励作用下结构的自由振动。以某1200杆平板网架为例进行数值分析,考察重物质量、坠落高度、绳索弹性模量、绳索截面积和等效振动系统阻尼比等因素对最大加速度幅值的影响,并与阶跃激励(由突卸重物产生,坠落高度为零)进行比较。结果表明:最大加速度幅值对重物质量、坠落高度和绳索截面积较为敏感;当产生相同的最大加速度幅值时,冲击激励需要的重物质量远小于阶跃激励。本文工作有利于提高网架结构的激振效率,并为网架结构单点冲击激励的定量分析提供有益参考。
关键词:网架结构;冲击激励;模态测试;阶跃激励;结构健康监测

Abstract

To solve the problem of actively stimulating the vibration of space trusses, a new impact excitation method by dropping heavy things from a specific height is proposed. By simplifying the complicated vibration system composed of the heavy thing, the cable and the structure, the equivalent vibration system with only one degree of freedom which simulates single-point impact excitation is set up. The expression for calculating the time history of single-point impact excitation caused by dropping a heavy thing is then obtained. If the time history is applied to the structure, the structural free vibration considering single-point impact excitation can be simulated. A space truss with 1200 members is taken as the numerical example. The influences of factors, such as the mass of the heavy thing, the dropping height, the elastic modulus and sectional area of the cable, and the damping ratio of the equivalent vibration system, on the largest acceleration amplitude are investigated. The proposed impact-excitation method is also compare with the step excitation method which is realized by suddenly releasing heavy things of a zero dropping height. Results show that the largest acceleration amplitude is sensitive to the mass of the heavy thing, the dropping height and the cable’s sectional area. Besides, to obtain the same largest acceleration amplitude, the masses required by the proposed impact excitation method are far less than those needed by the step excitation method. The work is beneficial to improve the vibration stimulation efficiency, and provides helpful references for the quantification analysis of single-point impact excitation of space trusses.
Key words: Space trusses; impact excitation; modal testing; step excitation; structural health monitoring

关键词

网架结构 / 冲击激励 / 模态测试 / 阶跃激励 / 结构健康监测

Key words

Space trusses / impact excitation / modal testing / step excitation / structural health monitoring

引用本文

导出引用
邹韬,蔡晓丽,伍晓顺. 网架结构单点冲击激励的数学模型与数值分析[J]. 振动与冲击, 2022, 41(15): 77-82
ZOU Tao, CAI Xiaoli, WU Xiaoshun. Mathematical model and numerical analysis of single point impact excitation of space truss structure[J]. Journal of Vibration and Shock, 2022, 41(15): 77-82

参考文献

[1] Nie G, Zhang C, Li D, et al. Collapse of the spatial double-layer cylinder shell by experimental study [J]. Engineering Structures, 2021,245: 112862.
[2] 惠卓, 秦卫红, 许剑武, 等. Geiger型碳纤维索穹顶结构连续倒塌性能非线性分析[J]. 振动与冲击, 2021, 40(15): 114-122.
HUI Zhuo, QIN Weihong, XU Jianwu, et al. Nonlinear analysis of progressive collapse behavior of Geiger type carbon fiber cable dome structure [J]. Journal of Vibration and Shock, 2021, 40(15): 114-122.
[3] 汪志昊, 皇幼坤, 李晓克, 等. 大跨度钢网架-玻璃组合楼板动力特性研究[J]. 振动与冲击, 2018, 37(13): 195-202.
WANG Zhihao, HUANG Youkun, LI Xiaoke, et al. Dynamic characteristics of a large-span steel space frame-glass composite floor [J]. Journal of Vibration and Shock, 2018, 37(13): 195-202.
[4] Chen G, Omenzetter P, Beskhyroun S. Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations [J]. Engineering Structures, 2017, 151: 839-860.
[5] 伊廷华, 周广东, 曲春绪, 等. 结构运营模态测-辨相和理论[J]. 土木工程学报, 2020, 53(10): 72-81+88.
Yi Tinghua, Zhou Guangdong, Qu Chunxu, et al. Intercoordination theory of testing and identification for structural operational modes [J]. China Civil Engineering Journal, 2020, 53(10): 72-81+88.
[6] Martins N, Caetano E, Diord S, et al. Dynamic monitoring of a stadium suspension roof: Wind and temperature influence on modal parameters and structural response [J]. Engineering Structures, 2014, 59: 80-94.
[7] Yan J, Peng H, Yu Y, et al. Compressive sensing of wind speed based on non-convex ℓp-norm sparse regularization optimization for structural health monitoring[J]. Engineering Structures, 2019, 194: 346-356.
[8] Kandel A, Sun X, Wu Y. Wind-induced responses and equivalent static design method of oval-shaped arch-supported membrane structure [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 213: 104620.
[9] Liu M, Li Q S, Huang S H. Large eddy simulation of wind-driven rain effects on a large span retractable roof stadium[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 195: 104009.
[10] Feng R, Zhu B, Wang X. A mode contribution ratio method for seismic analysis of large-span spatial structures[J]. International Journal of Steel Structures, 2015, 15(4): 835-852.
[11] Zhong J, Zhang J, Zhi X, et al. Identification of dominant modes of single-layer reticulated shells under seismic excitations[J]. Thin-Walled Structures, 2018, 127: 676-687.
[12] 姚姝, 张辉东, 周晓洁, 等. 空间单层网壳结构损伤杆件位置识别试验[J]. 哈尔滨工业大学学报, 2019, 51(06): 116-121.
YAO Shu, ZHANG Huidong, ZHOU Xiaojie, et al. Test on member damage location identification of single-layer reticulated shell [J]. Journal of Harbin Institute of Technology, 2019, 51(06): 116-121.
[13] 孙国军, 李晓辉, 薛素铎, 等. Levy 型劲性支撑穹顶自振特性试验[J]. 天津大学学报: 自然科学与工程技术版, 2019, 52(7): 719-724.
Sun Guojun, Li Xiaohui Xue Suduo, et al. Experiment on Self-Vibration Characteristics of Levy-Type Rigid Bracing Dome [J]. Journal of Tianjin University(Science and Technology), 2019, 52(7): 719-724.
[14] 庞瑞, 王文康, 张天鹏, 等. 踮脚和跳跃荷载下四边简支全装配式RC楼盖振动特性试验研究[J]. 建筑结构学报, 2021, 42(05): 121-132.
PANG Rui, WANG Wenkang, ZHANG Tianpeng, et al. Experimental study on vibration behavior of simple supported untopped precast RC floor under bounce and jumping loads [J]. Journal of Building Structures, 2021, 42(05): 121-132.
[15] 伍晓顺, 邓华, 孙桐海. 基于优化阶跃激励的索穹顶密集模态测试方法[J]. 浙江大学学报 (工学版), 2018, 52(2): 288-296.
WU Xiao-shun, DENG Hua, SUN Tong-hai. Method for identifying modal parameters of closely spaced modes of cable domes by optimizing step excitations [J]. Journal of Zhejiang University: Engineering Science, 2018, 52(2): 288–296.
[16] Wang X, Deng H. A step excitation optimization method for intensive modal identification of cable net structures[J]. Journal of Sound and Vibration, 2020, 465: 115017.
[17] Han H, Han W, Ma S et al. Enhanced processing of low signal-to-noise-ratio dynamic signals from pavement testing[J]. Measurement, 2021, 182: 109697.
[18] 任志彬, 王宗伟, 常志鹏, 等. 电磁阀用自锁电磁铁吸力与电压关系研究[J]. 推进技术, 2016, 37(7): 1372-1379.
REN Zhi-bin, WANG Zong-wei, CHANG Zhi-peng, et al. Research on Solenoid-Force-Voltage Relationship of Latching Solenoid for Solenoid Valves [J]. Journal of Building Structures, 2016, 37(7): 1372-1379.
[19] Dowell E. Hamilton’s principle and Hamilton’s equations with holonomic and non-holonomic constraints [J]. Nonlinear Dynamics, 2017, 88(2): 1093-1097.
[20] 空间网格结构技术规程: JGJ 7-2010 [S]. 北京: 中国建筑工业出版社, 2010.
Technical specification for space frame structures: JGJ 7-2010 [S]. China Architecture & Building Press, 2010.
[21] 建筑结构荷载规范: GB 50009-2012 [S]. 北京: 中国建筑工业出版社, 2012.
Load code for the design of building structures: GB 50009-2012 [S]. China Architecture & Building Press, 2012.
[22] 袁行飞,艾科热木江•塞米,马烁.一致质量矩阵在向量式有限元中的应用[J]. 华中科技大学学报(自然科学版), 2019, 47(11): 37-42.
YUAN Xingfei, AKRAM Samy, MA Shuo. Application of consistent mass matrix to vector form intrinsic finite element [J]. J.Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2019, 47(11): 37-42.
[23] 王新涛,邓华.面向索网结构关键刚度监测的目标模态测试策略[J]. 振动与冲击, 2021, 40(02): 204-212.
WANG Xintao, DENG Hua. Target modes testing strategy for monitoring the key stiffness of cable net structures [J]. Journal of Shock and Vibration, 2021, 40(02): 204-212.

PDF(864 KB)

Accesses

Citation

Detail

段落导航
相关文章

/