隧道拱部穿越页岩爆破开挖方法及参数试验研究

张万志1,2,徐帮树2,葛颜慧1,梅洁2,朱永学3,王丙坤3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 90-98.

PDF(4268 KB)
PDF(4268 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (15) : 90-98.
论文

隧道拱部穿越页岩爆破开挖方法及参数试验研究

  • 张万志1,2,徐帮树2,葛颜慧1,梅洁2,朱永学3,王丙坤3
作者信息 +

Blasting excavation method and parametric tests for tunnel arch crossing shale

  • ZHANG Wanzhi1, 2, XU Bangshu2, GE Yanhui1, MEI Jie2, ZHU Yongxue3, WANG Bingkun3
Author information +
文章历史 +

摘要

隧道拱部穿越页岩存在上软下硬的围岩分布特征,爆破开挖拱部常发生大体积岩体掉块、塌落的问题。依托海螺峪隧道工程,应用爆破开挖试验和数值模拟的方法,分析拱部页岩的破坏特征,提出了上软下硬岩体隧道上台阶CD开挖方法。并优化了光爆层炮孔及装药参数、掏槽布孔形式和减小最大单孔装药量等措施。对比分析隧道开挖的围岩破坏特征、超挖大小和围岩变形结果,采用优化的爆破开挖方案围岩轮廓成型的质量更好。结果表明:隧道拱部穿越页岩的爆破开挖,拱顶页岩沿结构面易发生自下而上的逐层脱离破坏,拱肩至拱腰页岩沿结构面易发生张裂破坏。采用上台阶CD开挖方法有利于减小一次开挖面积和约束拱顶页岩分离,采用优化的爆破参数可减小围岩损伤,爆后轮廓不规则边长由0.9 m减小为0.4 m。优化后毛洞的最大线性超挖和平均超挖面积大大减小,表现为:最大线性超挖拱顶由100.2 cm减小为28.6 cm、拱肩由50.1 cm减小为20.1 cm,断面平均超挖面积减小约48.2%。优化后围岩累计变形减小,左、右导洞拱顶最大沉降分别减小47.8%和34.9%,拱腰水平收敛值减小33.3%;下台阶开挖对上台阶拱顶沉降增幅左、右导洞分别减小7.6%和6.2%,拱腰水平收敛增幅减小3.1%。
关键词:大断面隧道;页岩;爆破开挖;超挖;爆破参数优化

Abstract

When the arch of tunnel passes through shale, the characteristic of surrounding rocks are upper soft and lower hard. In this case, the blasting excavation leads to problems of the arch rock falling and collapse. Based on the Hailuoyu tunnel project, the blasting excavation test and numerical simulation method were applied to analyze the damage characteristics of arch shale, and the upper bench CD method of tunnel in upper soft and lower hard rock mass was proposed. Then, some optimization measures were put forward, such as blasthole pattern and charge parameters of smooth blasting rock layer, cutting hole layout and its maximum single hole charge. By comparing and analyzing the danage characteristics, overbreak and deformations of surrounding rock during tunnel excavation, it was found that the optimized blasting excavation method has better quality of surrounding rock contour formation. The results show that when the tunnel arch passes through shale, the roof shale is easy to be broken layer by layer from bottom to top along the structural surfaces, and the shale from spandrel to haunch tends to open and fracture along the structural surfaces. The upper bench CD method is beneficial to reduce the one-off excavation area and restrain the separation of shale. Simultaneously, the damage of surrounding rock can be reduced by using optimized blasting parameters, and the side length of irregular broken profile is reduced from 0.9 m to 0.4 m. The maximum linear overbreak and average overbreak area of tunnel after optimization is greatly reduced, which is shown as: the maximum linear overbreak at vault is decreased from 100.2 cm to 28.6 cm, at spandrel is reduced from 50.1 cm to 20.1 cm, and the average overbreak area is reduced by 48.2%. Simultaneously, the cumulative deformation of surrounding rock is reduced, the maximum settlements of left and right pilot heading are decreased by 47.8% and 34.9% respectively, and the horizontal convergence of arch waist is reduced by 33.3%. The vault settlement increases of left and right pilot heading of the upper face arch are decreased by 7.6% and 6.2% respectively, while the arch waist horizontal convergence is decreased by 3.1% after the excavation of the lower face.
Key words:large cross-section tunnel; shale; blasting excavation; overbreak; optimization of blasting parameters

关键词

大断面隧道 / 页岩 / 爆破开挖 / 超挖 / 爆破参数优化

Key words

large cross-section tunnel / shale / blasting excavation / overbreak / optimization of blasting parameters

引用本文

导出引用
张万志1,2,徐帮树2,葛颜慧1,梅洁2,朱永学3,王丙坤3. 隧道拱部穿越页岩爆破开挖方法及参数试验研究[J]. 振动与冲击, 2022, 41(15): 90-98
ZHANG Wanzhi1, 2, XU Bangshu2, GE Yanhui1, MEI Jie2, ZHU Yongxue3, WANG Bingkun3. Blasting excavation method and parametric tests for tunnel arch crossing shale[J]. Journal of Vibration and Shock, 2022, 41(15): 90-98

参考文献

[1] 张国华, 陈礼彪, 夏祥, 等. 大断面隧道爆破开挖围岩损伤范围试验研究及数值计算[J]. 岩石力学与工程学报, 2009, 28(08):1610-1619.
ZHANG Guohua, CHEN Libiao, XIA Xiang, et al. Numerical simulation and experimental study of damage range of surrounding rock in large tunnel under blasting excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(08):1610-1619.
[2] NAVARRO J, SANCHIDRIAN J.A, SEGARRA P, et al. Detection of potential overbreak zones in tunnel blasting from MWD data [J]. Tunnelling and Underground Space Technology, 2018, 82:504-516.
[3] LISJAK A, GRASSELLI G, VIETOR T. Continuum–discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales [J]. International Journal of Rock Mechanics & Mining sciences, 2014, 65:96-115.
[4] 陈正林, 蒲文明, 陈钒,等. 张家岩隧道水平层状泥岩段爆破优化研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(6):865-872.
CHEN Zhenglin, PU Wenming, CHEN Fan, et al. Research on blasting optimization of horizontal layered mudstone section in Zhangjiayan tunnel [J]. Journal of Xi'an University of architecture and Technology (Natural Science Edition), 2019, 51(6): 865-872.
[5] Minh NN, Cao P, Liu ZZ. Contour blasting parameters by using a tunnel blast design mode [J]. Journal of Central South University, 2021, 28(1): 100-111. DOI: https://doi.org/10.1007/s11771-021-4589-x.
[6] 管晓明, 张良, 王利民, 等. 隧道近距下穿管线的爆破振动特征及安全标准[J]. 中南大学学报(自然科学版), 2019, 50(11): 2870-2885.
GUAN Xiaoming, ZHANG Liang, WANG Limin, et al. Blasting vibration characteristics and safety standard of pipeline passed down by tunnel in short distance [J]. Journal of Central South University (Science and Technology), 2019, 50(11): 2870-2885.
[7] SALUM A H, MURTHY V M S R. Optimising blast pulls and controlling blast-induced excavation damage zone in tunnelling through varied rock classes [J]. Tunnelling and Underground Space Technology, 2019, 85:307-318.
[8] ZHANG WZ, XU BS, MEI J, et al. A numerical study on mechanical behavior of jointed rock masses after tunnel excavation [J]. Arabian Journal of Geosciences, 2020, 13(11):416.
[9] CHAKRABORTY A K, JETHWA J L. Tunnel blasting techniques in difficult ground conditions [J]. Geotechnical & Geological Engineering, 1994, 12(4):219-239.
[10] 刘翔宇, 龚敏, 吴昊骏, 等. 多因素耦合影响下隧道电子雷管爆破参数的计算与实践[J]. 振动与冲击, 2021, 40(5): 24-32.
LIU Xiangyu,GONG Min,WU Haojun, et al. Calculation and practice of blasting parameters of electronic detonator in tunnel under the influence of multi-factor coupling [J]. Journal of Vibration and Shock, 2021, 40(5): 24-32.
[11] 李术才, 李克先, 雷刚,等. 近距离下穿在建地铁隧道施工爆破变形及控制方法研究[J]. 岩土力学, 2014, 35(s2):284-289.
LI Shucai, LI Kexian, LEI Gang, et al. Study of blasting vibration and deformation control for metro construction beneath existing metro tunnel in short distance [J]. Rock and Soil Mechanics, 2014, 35(s2):284-289.
[12] LIU K, LIU B. Optimization of smooth blasting parameters for mountain tunnel construction with specified control indices based on a GA and ISVR coupling algorithm [J]. Tunnelling and Underground Space Technology, 2017, 70:363-374.
[13] 徐帮树, 张万志, 石伟航, 等. 节理裂隙层状岩体隧道掘进爆破参数试验研究[J]. 中国矿业大学学报, 2019, 48(6):1248-1255.
XU Bangshu, ZHANG Wanzhi, SHI Weihang, et al. Experimental study of parameters of tunneling blasting in jointed layered rock mass[J]. Journal of China University of mining and technology, 2019, 48(6):1248-1255.
[14] 龚敏, 秦天, 吴昊骏, 等. 基于多建构筑物不同振速控制的坐标点阵化隧道安全单段药量计算方法[J]. 振动与冲击, 2020, 39(20): 134-141.
GONG Min, QIN Tian, WU Haojun, et al. A coordinate lattice computational method of safe charges per delay in a tunnel under different vibration velocities[J]. Journal of Vibration and Shock, 2020, 39(20): 134-141.
[15] 朱永学, 王丙坤, 谢丰泽, 等. 上软下硬岩体大断面隧道掏槽爆破技术优化[J/OL]. https://kns.cnki.net/kcms/detail/42.1164.TJ.20200803.1309.014.html, 爆破, 2020.
ZHU Yongxue, WANG Bingkun, XIE Fengze, et al. Optimization of cutting blasting technology for large cross-section tunnel in upper soft and lower hard rock mass [J/OL]. https://kns.cnki.net/kcms/detail/42.1164.TJ.20200803.1309.014.html, Blasting, 2020.
[16] 中交第一公路工程局有限公司.公路隧道施工技术规范:JTG/T 3660—2020[S]. 北京:人民交通出版社,2020:45.
[17] 李文江, 孙明磊, 朱永全, 等. 软弱围岩隧道台阶法施工中拱脚稳定性及其控制技术[J]. 岩石力学与工程学报, 2012, 31(S1):2729-2737.
LI Wenjiang, SUN Minglei, ZHU Yongquan, et al. Arch springing stabling and its control techniques during construction of tunnels with weak surrounding rocks by bench cut method [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1):2729-2737.
[18] 林从谋, 张在晨, 郑强, 等. 小净距隧道原位二扩四CD工法软弱围岩稳定性及支护参数研究[J]. 土木工程学报, 2013, 46(07): 124-132.
LIN Congmou, CHEN Libiao, JIANG Lili, el al. Research on blasting stability control technology of large-span highway tunnel with super-small clear spacing at highway expansion project [J]. Chinese Journal of rock Mechanics and Engineering, 2010, 29(07):1371-1378.
[19] 罗彦斌, 石州, 陈建勋, 等. 超大跨度隧道上台阶CD法中隔壁力学计算模型及施工力学行为研究[J]. 中国公路学报, 2020, 33(12): 235-248.
LUO Yanbin, SHI Zhou, CHEN Jianxun, el al. Mechanical calculation model and research on construction mechanical behavior of middle diaphragm in upper bench CD method for super-large span tunnel[J]. China Journal of Highway and Transport, 2020, 33(12): 235-248.
[20] Li JC, Ma GW. Experimental study of stress wave propagation across a filled rock joint. International Journal of Rock Mechanics and Mining Sciences, 2009, 46:471-478.
[21] Deng XF, Zhu JB, Chen SG, el al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses. Tunnelling and Underground Space Technology, 2014, 43:88-100.

PDF(4268 KB)

348

Accesses

0

Citation

Detail

段落导航
相关文章

/