为计算推进轴系的中高频振动,对现有数值组装法(Numerical Assembly Method - NAM)进行改进。改进的数值组装法(m-NAM)首先将推进轴系等效为多跨阶梯Timoshenko梁,采用精确的振动微分方程描述等截面梁段,并根据节点连续性条件构建系统矩阵方程,然后设计加权矩阵,通过行归一化降低系统矩阵的病态程度,解决NAM的高频数值发散问题。通过数值算例比较m-NAM、NAM、连续质量传递矩阵法和解析法,计算结果表明,m-NAM显著拓宽了轴系振动频率的计算范围,在高频段仍保持较高的计算精度。
关键词:数值组装法;传递矩阵法;轴系横向振动
Abstract
The traditional numerical assembly method (NAM) is modified to analyze the mid-high frequency vibration of propulsion shafting systems. In the modified NAM, a propulsion shafting system is first modeled as a multi- stepped Timoshenko beam and described precisely by the equation of vibration on each beam segment, then the system matrix equation is established by assembling all the beam segments according to the compatibility conditions, and finally a weighting matrix for row normalization is proposed to reduce the condition number of the system matrix. As a result, the numerical divergence in the computation of mid-high frequency vibration is eliminated. Numerical examples are given to compare the m-NAM with the traditional NAM, the continuous-mass transfer matrix method and the analytical solution. The results have shown that the m-NAM is of good accuracy of computation at high frequencies.
Key words: numerical assembly method; transfer matrix method; shaft lateral vibration
关键词
数值组装法 /
传递矩阵法 /
轴系横向振动
{{custom_keyword}} /
Key words
numerical assembly method /
transfer matrix method /
shaft lateral vibration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 芮筱亭, 贠来峰, 陆毓其等. 多体系统传递矩阵法及其应用[M]. 北京: 科学出版社, 2008
[2] Wu J, Chen C. A continuous-mass TMM for free vibration analysis of a non-uniform beam with various boundary conditions and carrying multiple concentrated elements[J]. Journal of Sound and Vibration, 2008, 311:1420-1430.
[3] Zhang Z, Chen F, Zhang Z, et al. Vibration analysis of non-uniform Timoshenko beams coupled with flexible attachments and multiple discontinuities[J]. International Journal of Mechanical Sciences, 2014, 80:131-143.
[4] 徐颖蕾. 推进轴系校中及主动艉支承标高控制方法研究[D]. 上海: 上海交通大学, 2018
[5] Xie X, Ren M, Zhu Y, et al. Simulation and experiment on lateral vibration transmission control of a shafting system with active stern support[J]. International Journal of Mechanical Sciences, 2020, 170: 105363
[6] Horner G, Pilkey W. The Riccati transfer matrix method[J]. Journal of Mechanical Design, 1978, 100:297-302.
[7] 王正. Riccati传递矩阵法的奇点及其消除方法[J]. 振动与冲击, 1987, 22(2): 74-78.
Wang Zheng. Singular point and elimination method of Riccati transfer matrix method[J]. Journal of Vibration and Shock, 1987, 22(2): 74-78.
[8] 黄娟, 谢诞梅, 万剑锋, 等. 改进型Riccati方法在计算轴系扭振特性中奇点的问题[J]. 制冷空调与电力机械, 2003, 24(5): 66-68.
HUANG Juan, XIE Dan-mei, WAN Jian-feng, et al. Analysis on problem of removed the odd point in the calculation of rotors torsional vibration characteristics using the improved Riccati method[J]. Refrigeration Air Conditioning & Electric Poser Machinery, 2003, 24(5): 66-68.
[9] Bestle D, Abbas L, Rui X. Recursive eigenvalue search algorithm for transfer matrix method of linear flexible multibody systems[J]. Multibody System Dynamics, 2014, 32(4): 429-444
[10] Wu J, Chou H. A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of sprung masses[J]. Journal of Sound and Vibration, 1999, 220(3): 451-468.
[11] Lin H. On the natural frequencies and mode shapes of a multi-span Timoshenko beam carrying a number of various concentrated elements[J]. Journal of Sound and Vibration, 2009, 319: 593-605.
[12] Yesilce Y, Demirdag O. Effect of axial force on free vibration of Timoshenko multi-span beam carrying multiple spring-mass systems[J]. International Journal of Mechanical Sciences, 2008, 50(6): 995-1003.
[13] Xu W, Cao M, Ren Q, et al. Numerical Evaluation of High-Order Modes for Stepped Beam[J]. Journal of Vibration and Acoustics, 2014, 136(1): 014503.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}