磁流变冲击缓冲系统最优广义宾汉数控制

王成,王目凯,于东,陈照波,闫辉

振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 1-9.

PDF(2142 KB)
PDF(2142 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 1-9.
论文

磁流变冲击缓冲系统最优广义宾汉数控制

  • 王成1,王目凯2,于东2,陈照波2,闫辉2
作者信息 +

Optimal generalized Bingham number control for a magnetorheological shock mitigation system

  • WANG Cheng1,WANG Mukai2,YU Dong2,CHEN Zhaobo2,YAN Hui2
Author information +
文章历史 +

摘要

在理论和试验分析磁流变缓冲器(magnetorheological shock absorber, MRSA)阻尼力特性的基础上,建立了考虑二次型阻尼特性的单自由度冲击缓冲系统的动力学方程,定义了磁流变冲击缓冲系统的广义宾汉数(generalized Bingham number, GBN)。以软着陆为控制目标,提出了考虑二次型阻尼特性的磁流变冲击缓冲系统的最优广义宾汉数控制策略。推导了负载的加速度、速度和位移公式,分析了磁流变冲击缓冲系统在不同广义宾汉数的响应。仿真分析和试验测试验证了基于二次型阻尼的最优广义宾汉数控制策略在软着陆控制精度上优于基于线性阻尼的最优宾汉数控制策略。

Abstract

Based on the theoretical and experimental analysis of the damping force characteristics of a magnetorheological shock absorber (MRSA), the dynamic equation of a single degree of freedom shock mitigation system considering quadratic damping was established, and the generalized Bingham number (GBN) was defined. An optimal generalized Bingham number control strategy of magnetorheological shock mitigation system considering quadratic damping was proposed to achieve a soft landing. The acceleration, velocity, and displacement formulas of the payload were deduced, and the dynamic response of the magnetorheological shock mitigation system under different generalized Bingham numbers was analyzed. Simulation analysis and experimental tests verify that the optimal generalized Bingham number control strategy based on quadratic damping is superior to the optimal Bingham number control strategy based on linear damping in terms of soft landing control accuracy.

关键词

磁流变液;磁流变缓冲器(MRSA);冲击缓冲;二次型阻尼 / 软着陆 / 广义宾汉数(GBN)

Key words

magnetorheological fluids / magnetorheological shock absorber (MRSA) / shock mitigation / quadratic damping / soft landing / generalized Bingham number (GBN)

引用本文

导出引用
王成,王目凯,于东,陈照波,闫辉. 磁流变冲击缓冲系统最优广义宾汉数控制[J]. 振动与冲击, 2022, 41(16): 1-9
WANG Cheng,WANG Mukai,YU Dong,CHEN Zhaobo,YAN Hui. Optimal generalized Bingham number control for a magnetorheological shock mitigation system[J]. Journal of Vibration and Shock, 2022, 41(16): 1-9

参考文献

[1] 白先旭,杨森. 磁流变半主动落锤冲击缓冲系统的 “软着陆” 控制试验与分析[J]. 机械工程学报,2021, 57(1): 121-127.
BAI Xianxu, YANG Sen. Experimental test and analysis of "soft-landing" control for drop-induced shock systems using magnetorheological energy absorber[J]. Journal of Mechanical Engineering, 2021, 57(1): 121-127.
 [2] BISAGNI C. Crashworthiness of helicopter subfloor structures[J]. International Journal of Impact Engineering,2002, 27(10): 1067-1082.
 [3] WITTE L, ROLL R, BIELE J, et al. Rosetta lander Philae–Landing performance and touchdown safety assessment[J]. Acta Astronautica, 2016, 125: 149-160.
 [4] ??MARSHALL J T, RILEY M R. A comparison of the mechanical shock mitigation performance of a shock isolation seat subjected to laboratory drop tests and at-sea seakeeping trials[R]. NAVSEA Carderock Virginia Beach United States, 2020.
 [5] 罗昌杰,周安亮,刘荣强,等. 金属蜂窝异面压缩下平均压缩应力的理论模型[J]. 机械工程学报, 2010, 46(18): 52-59.
LUO Changjie, ZHOU Anliang, LIU Rongqiang, et al. Average compressive stress constitutive equation of honeycomb metal under out-of-plane compression[J]. Journal of Mechanical Engineering,2010, 46(18): 52-59.
 [6] DESJARDINS S P. The evolution of energy absorption systems for crashworthy helicopter seats[J]. Journal of the American Helicopter Society,2006, 51(2): 150-163.
 [7] MIKUŁOWSKI G, JANKOWSKI Ł. Adaptive landing gear: optimum control strategy and potential for improvement[J]. Shock and Vibration, 2009, 16(2): 175-194.
 [8] 郑佳佳,杨哲,黄林,等. 并联式磁流变阻尼器磁场分布分析[J]. 机床与液压,2014(5): 121-124.
ZHENG Jiajia, YANG Zhe, HUANG Lin, et al. A new type of MR damper magnetic circuit analysis[J]. Machine Tool & Hydraulics,2014(5): 121-124.
 [9] JEON J, KOO S. Viscosity and dispersion state of magnetic suspensions[J]. Journal of Magnetism and Magnetic Materials,2012, 324(4): 424-429.
[10] WERELEY N M, CHOI Y, SINGH H J. Adaptive energy absorbers for drop-induced shock mitigation[J]. Journal of Intelligent Material Systems and Structures,2011, 22(6): 515-519.
[11] SALEH M, SEDAGHATI R, BHAT R. Dynamic analysis of an SDOF helicopter model featuring skid landing gear and an MR damper by considering the rotor lift factor and a Bingham number[J]. Smart Materials and Structures,2018, 27(6): 65013.
[12] CHOI Y T , WERELEY N M. Drop-induced shock mitigation using adaptive magnetorheological energy absorbers incorporating a time lag[J]. Journal of Vibration and Acoustics 2015, 137(1): 011010.
[13] WANG M K, CHEN Z B, WERELEY N M. Adaptive magnetorheological energy absorber control method for drop-induced shock mitigation[J]. Journal of Intelligent Material Systems and Structures,2021, 32(4): 449-461.
[14] 寿梦杰,廖昌荣,叶宇浩,等. 冲击载荷下磁流变缓冲器的动力学行为[J]. 机械工程学报, 2019, 551): 72-80.
SHOU Mengjie, LIAO Changrong, YE Yuhao, et al. Dynamic behavior of magnetorheological energy absorber under impact loading [J]. Journal of Mechanical Engineering, 2019, 55(1): 72-80.
[15] SALEH M, SEDAGHATI R, BHAT R. Design optimization of a bi-fold MR energy absorber subjected to impact loading for skid landing gear applications[J]. Smart Materials and Structures, 2019, 28(3): 35031.
[16] SINGH H J, HU W, WERELEY N M, et al. Experimental validation of a magnetorheological energy absorber design optimized for shock and impact loads[J]. Smart Materials & Structures,2014, 23(12): 125033.

PDF(2142 KB)

Accesses

Citation

Detail

段落导航
相关文章

/