基于声学虹吸效应的水下低频大宽带吸声机理研究

马承志1,2,王立博1,2,吴晓1,2,吴九汇1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 100-107.

PDF(1652 KB)
PDF(1652 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 100-107.
论文

基于声学虹吸效应的水下低频大宽带吸声机理研究

  • 马承志1,2,王立博1,2,吴晓1,2,吴九汇1,2
作者信息 +

A study on the mechanism of underwater low frequency and wide band sound absorption based on acoustic siphon effect

  • MA Chengzhi1,2,WANG Libo1,2,WU Xiao1,2,WU Jiuhui1,2
Author information +
文章历史 +

摘要

利用有限元软件COMSOL建立了薄板型超材料的仿真模型,在声学虹吸效应基础上研究了其低频大宽带吸声机理。通过探究在声学虹吸效应作用下压差声汇机理、声阻抗匹配机理及负动态等效密度机理,验证了该超材料的低频大宽带吸声性能;讨论了面积比、薄板厚度和质量块高度等参数变化对于薄板型超材料的吸声性能影响。结果表明:当一定频率的平面波入射该超材料时,会在元胞某一位置处发生共振,具有最大的吸声量,在不同面积比的情况下,该超材料仍然具有较为匹配的声阻抗,几乎所有入射能量可以被迫流向这种谐振元胞,增强元胞振动,使之仍然保持良好的吸声效果;当薄板厚度变小或者质量块高度变大时,吸声系数的峰值频率会向低频移动。最后,通过合理设计优化薄板型超材料的各项参数实现了水下100~500 Hz的低频大宽带吸声。
关键词:低频;大宽带;吸声;面积比

Abstract

The simulation model of thin plate metamaterial is established by using finite element software COMSOL, and its low frequency and wide band sound absorption mechanism is studied on the basis of acoustic siphon effect. By exploring the mechanism of differential pressure acoustic convergence, acoustic impedance matching and negative dynamic equivalent density under the action of acoustic siphon effect, the low frequency and wide band sound absorption performance of the metamaterial is verified. the effects of parameters such as area ratio, sheet thickness and mass height on the sound absorption properties of thin plate metamaterials are discussed. The results show that when a plane wave of a certain frequency is incident on the metamaterial, the resonance will occur at a certain position of the cell and has the maximum sound absorption. in the case of different area ratio, the metamaterial still has a relatively matching acoustic impedance. Almost all the incident energy can be forced to flow to the resonant cell to enhance the cell vibration and still maintain a good sound absorption effect. When the thickness of the sheet becomes smaller or the height of the mass increases, the peak frequency of the sound absorption coefficient will shift to low frequency. Finally, the low frequency and wide band sound absorption of underwater 100-500Hz is realized by reasonably designing and optimizing the parameters of thin plate metamaterials.
Key words: low frequency; large broadband; sound absorption; area ratio

关键词

低频 / 大宽带 / 吸声 / 面积比

Key words

low frequency / large broadband / sound absorption / area ratio

引用本文

导出引用
马承志1,2,王立博1,2,吴晓1,2,吴九汇1,2. 基于声学虹吸效应的水下低频大宽带吸声机理研究[J]. 振动与冲击, 2022, 41(16): 100-107
MA Chengzhi1,2,WANG Libo1,2,WU Xiao1,2,WU Jiuhui1,2. A study on the mechanism of underwater low frequency and wide band sound absorption based on acoustic siphon effect[J]. Journal of Vibration and Shock, 2022, 41(16): 100-107

参考文献

[1] LIU J, HERRIN D W. Enhancing micro-perforated panel attenuation by partitioning the adjoining cavity[J]. Applied Acoustics,2010,71(2):120-127.
[2] MAA D Y. Practical single MPP absorber [J]. International Journal of Acoustics and Vibrations,2007,12(1):3-6.
[3] FUCHS H V, HERRIN D W. Micro-perforated structures as sound absorbers – a review and outlook[J]. Acta Acustica united with Acustica,2006,92(1):139-146.
[4] MAA D Y. Potential of microperforated panel absorber[J]. Journal of the Acoustical Society of America, 1998,104(5):2861-2866.
[5] AREANS J P, CROCKER M J. Recent trends in porous sound absorbing materials for noise control [J]. Sound & Vibration,2010,44(7):12-17.
[6] LIU C R , WU J H , LU K , et al. Acoustical siphon effect for reducing the thickness in membrane-type metamaterials with low-frequency broadband absorption[J]. Applied Acoustics, 2019, 148:1-8.
[7] LEBLANCE A , LAVIE A . Three-dimensional-printed membrane-type acoustic metamaterial for low frequency sound attenuation[J]. The Journal of the Acoustical Society of America, 2017, 141(6):EL538-EL542.
[8] MA F , HUANG M , WU J H . Acoustic metamaterials with synergetic coupling[J]. Journal of Applied Physics ,2017, 122(21):215102.
[9] MA G , YANG M , XIAO S , et al. Acoustic metasurface with hybrid resonances[J]. Nature Materials, 2014, 13(9):873-878.
[10] LANGFELDT F , RIECKEN J , GLEINE W , et al. A membrane-type acoustic metamaterial with adjustable acoustic properties[J]. Journal of Sound & Vibration, 2016,373:1-18.
[11] MEI J , MA G , YANG M , et al. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature Communications,2012,3:756.
[12] YANG Z , MEI J , YANG M , et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters, 2008,101(20):204301.
[13] SCHWAN L, UMNOVA O, BOUTIN C, et al. Sound absorption and reflection from a resonant metasurface: Homogenisation model with experimental validation[J]. Wave Motion: An International Journal Reporting Research on Wave Phenomena, 2017,72:154-172.
[14] DUBOIS M , SHI C , WANG Y , et al. A thin and conformal metasurface for illusion acoustics of rapidly changing profiles[J]. Applied Physics Letters, 2017,110(15):151902. 
[15] LI J F, WANG W Q, XIE Y B, et al. A sound absorbing metasurface with coupled resonators[J]. Applied Physics Letters,2016,109(9):091908.
[16] LI Y, ASSOUAR B M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness [J]. Appl Phys Lett,2016,108(6):204301. 
[17] 张翔, 吴锦武, 周伟青, 等. 圆环形非常规排布微穿孔板吸声机理的研究[J]. 振动与冲击, 2021, 40(6): 272-277.
ZHANG Xiang, WU Jinwu, ZHOU Weiqing, et al. Sound absorption mechanism of micro perforated panels with unconventional annular arrangement of micropores[J]. Journal of Vibration and Shock, 2021, 40(6):272-277.
[18] 陈鑫, 马文婷, 郝耀东, 等. 梯度弹性多孔材料吸声性能分析与优化设计[J]. 振动与冲击, 2021, 40(9): 270-277.
CHEN Xin, MA Wenting, HAO Yaodong, et al. Analysis and optimization design for sound absorption performance of gradient elastic porous materials[J]. Journal of Vibration and Shock, 2021, 40(9):270-277.
[19] YONG L , LIANG B , TAO X , et al. Acoustic focusing by coiling up space[J]. Applied Physics Letters, 2012, 101(23):036609.
[20] XIE Y , KONNEKER A , POPA B I , et al. Tapered labyrinthine acoustic metamaterials for broadband impedance matching[J]. Applied Physics Letters, 2013,103(20):055602.
[21] WU X , FU C , LI X , et al. Low-frequency tunable acoustic absorber based on split tube resonators[J]. Applied Physics Letters, 2016, 109(4):043501.  
[22] CAI X , GUO Q , HU G , et al. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators[J]. Applied Physics Letters, 2014, 105(12):339-356.
[23] DENG Y Q , QI D X , TUO M J , et al. Multimode acoustic transparency and slow sound effects in hybrid subwavelength resonators[J]. Applied Physics Express, 2017, 10(3):037302.
[24] JIMÉNEZ N, ROMERO-GARCÍA V, PAGNEUX V, et al. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound[J]. Physical Review B,2017, 95(1):14205-14205.
[25] GROBY J P , HUANG W , LARDEAU A , et al. The use of slow waves to design simple sound absorbing materials[J]. Journal of Applied Physics, 2015, 117(12):594-598.
[26] JIMENEZ N , HUANG W , ROMERO-GARCIA V , et al. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption[J]. Applied Physics Letters, 2016, 109(12):455-157.
[27] CAI C , MAK C M . Acoustic performance of different Helmholtz resonator array configurations[J]. Applied Acoustics, 2018, 130:204-209.
[28] LONG H , CHENG Y , TAO J , et al. Perfect absorption of low-frequency sound waves by critically coupled subwavelength resonant system[J]. Applied Physics Letters, 2017, 110(2):023502. 
[29] 张权, 吴友亮. 一种水下低频吸声尖劈的研制[J]. 声学与电子工程, 2014 (113):38-40. 
ZHANG Quan, WU You-liang. Development of a kind of underwater low frequency sound absorption wedge[J]. Acoustic and Electronic Engineering, 2014(113):38-40.
[30] 朱金华, 王源升, 文庆珍,等. 水声吸声高分子材料的发展及应用[J]. 高分子材料科学与工程, 2005,21(4):46-50. 
ZHU Jinhua,WANG Yuansheng,WEN Qingzhen, et al. Development and application of water sound absorbing polymer materials[J]. Polymer Materials Science and Engineering, 2005,21(4):46-50.
[31] 王育人, 缪旭弘, 姜恒,等. 水下吸声机理与吸声材料[J]. 力学进展, 2017, 47(1):92-121.
WANG Yuren, LIAO Xuhong, JIANG Heng, et al. Underwater sound absorption mechanism and sound absorption materials[J]. Advances in Mechanics, 2017, 47(1):92-121.
[32] 程道周, 刘文武, 楼京俊, 等. 消声瓦的吸声机理研究[J]. 船海工程, 2007, 36(3):101-104. 
 CHENG Daozhou, LIU Wuwen, LOU Jingjun, et al. Study on sound absorption mechanism of anechoic tile[J]. Ship & Ocean Engineering, 2007, 36(3):101-104.
[33] 刘云路, 曾竟成, 杨金水. 橡胶水下吸声材料的研究进展[J]. 橡胶工业, 2016, 63(8):506-510.
 LIU Yunlu, ZENG Jingcheng, YANG Jinshui. Research progress of rubber underwater sound absorbing material [J]. China Rubber Industry, 2016, 63(8):506-510.
[34] 石云霞, 奚正平, 汤慧萍,等. 水下吸声材料的研究进展[J]. 材料导报, 2010, 24(1):49-52. 
SHI Yunxia, XI Zhengping, TANG Huiping, et al. Research progress of underwater sound absorbing materials[J]. Materials Review, 2010, 24(1):49-52.
[35] 常道庆, 刘碧龙, 郑成诗,等. 水下薄板吸声结构研究[C]// 中国声学学会2009年青年学术会议.长沙:中国声学学会,2009.
[36] ZHAO H , WEN J , YANG H , et al. Backing effects on the underwater acoustic absorption of a viscoelastic slab with locally resonant scatterers[J]. Applied Acoustics, 2014, 76:48-51. 
[37] YE C , LIU X , XIN F , et al. Influence of hole shape on sound absorption of underwater anechoic layers[J]. Journal of Sound and Vibration, 2018, 426:54-74.  
[38] ZHAO D , ZHAO H , YANG H , et al. Optimization and mechanism of acoustic absorption of Alberich coatings on a steel plate in water[J]. Applied Acoustics, 2018, 140:183-187.
[39] MENG H , WEN J , ZHAO H , et al. Optimization of locally resonant acoustic metamaterials on underwater sound absorption characteristics[J]. Journal of Sound and Vibration, 2012, 331(20):4406-4416.
[40] YANNI Z , JIE P , KEAN C , et al. Subwavelength and quasi-perfect underwater sound absorber for multiple and broad frequency bands[J]. The Journal of the Acoustical Society of America, 2018, 144(2):648-659. 
[41] 秦建平, 田雅琴, 陈惠. 复合钢板的发展现状[J]. 中国稀土学报, 2005(增刊2):178-181.
QIN Jianping, TIAN Yaqin, CHEN Hui. Development status of composite steel plate[J]. Chinese Journal of Rare Earth,  2005(Suppl.2):178-181.
[42] 王成国, 孙希泰, 朱静,等. 层压减振复合钢板的结构设计[J]. 机械工程学报, 1999, 35(4):103-106.
WANG Chengguo, SUN Xitai, ZHU Jing, et al. Structural design of laminate pressure damping composite steel plate[J]. Journal of Mechanical Engineering, 1999, 35(4):103-106.
[43] 王成国, 彭其凤. 高聚物夹层材料对层压减振复合钢板减振性能的影响[J]. 工程塑料应用, 1994, 22(6):23-25.
WANG Chengguo, PENG Qifeng. Effect of polymer sandwich material on vibration damping performance of laminate pressure damping composite steel plate[J]. Engineering Plastics Application, 1994, 22(6):23-25.
[44] 赵钧良,张人德. 不对称型复合阻尼钢板的研究[J]. 上海钢研,1997(5):13-17.
ZHAO Junliang, ZHANG Rende. Study on asymmetric composite damping steel plate[J]. Shanghai Iron and Steel Research,1997(5):13-17.
[45] 王成国, 朱静. 层压减振复合钢板减振性能的温度依存性[J]. 金属学报, 1995, 31(10):B451-B454.
WANG Chengguo, ZHU Jing. Temperature dependence of damping performance of laminated composite steel plate[J].   Journal of Metal, 1995, 31(10):B451-B454.
[46] 王以理. 复合阻尼钢板的结构与性能特点[J]. 噪声与振动控制, 1996(5):46-48.
WANG Yili. Structure and performance characteristics of composite damping steel plate[J]. Noise and Vibration Control, 1996(5):46-48.
[47] 杜功焕,朱哲民,龚秀芬.声学基础:第三版[M]. 南京:南京大学出版社,2012.
[48] CHEN Y Y, HUANG G L, ZHOU X M, et al. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model[J]. Journal of the Acoustical Society of America, 2014, 136(3):2926.
[49] 倪振华. 振动力学[M]. 西安:西安交通大学出版社,1989.
[50] FAHY F, GARDONIO P. Sound and structural vibration—radiation, transmission and response [M]. 2nd ed .Oxford: Academic Press of Elsevier,2007.
[51] 刘红星, 吴九汇, 沈礼,等. 声子晶体结构低频降噪机理研究及应用[J]. 南京大学学报(自然科学版), 2013(4):135-142.
LIU Hongxing, WU Jiuhui, SHEN Li, et al. Research and application of low frequency noise reduction mechanism of phonon crystal structure[J].Journal of Nanjing University(Natural Sciences), 2013(4):135-142.

PDF(1652 KB)

Accesses

Citation

Detail

段落导航
相关文章

/