钢箱梁受弯屈曲的磁记忆参数表征

韦璐茜1,苏三庆2,王威2,严敏嘉1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 142-148.

PDF(2073 KB)
PDF(2073 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 142-148.
论文

钢箱梁受弯屈曲的磁记忆参数表征

  • 韦璐茜1,苏三庆2,王威2,严敏嘉1
作者信息 +

Characterization of buckling of a steel box girder under bending using parameter of magnetic memory

  • WEI Luxi1,SU Sanqing2,WANG Wei2,YAN Minjia1
Author information +
文章历史 +

摘要

为了探究金属磁记忆检测技术对桥梁钢构件屈曲部位的损伤预测,采用金属磁记忆技术检测了Q345qC四点受弯波纹腹板钢箱梁表面的磁场强度法向分量 ,提取磁表征量并对其与荷载之间的关系进行了分析。研究结果表明:金属磁记忆检测技术可用于对施工阶段桥梁钢构件表面的失稳监测,易屈曲位置可以通过磁表征量 的变化规律反映。研究分析认为,易屈曲位置的磁表征量 随荷载的变化呈现先上升,临近构件屈服时下降的规律。通过 变化的规律性可以判别易屈曲位置,通过 开始下降的时间可以对屈曲进行预警,防范灾害的发生。该研究为施工阶段钢结构的失稳监测提供了一种有效方法。
关键词:结构健康监测;屈曲参数表征;金属磁记忆;波纹腹板钢箱梁;无损检测

Abstract

To predict the buckling position of the bridge steel members, the metal magnetic memory technology (MMMT) was used. The normal component of magnetic field   of steel box girder with corrugated web made of Q345qC was detected using MMMT. The magnetic characteristic   was extracted, and the relation between the   and load was analyzed. The results show that: MMMT can be used to monitor the surface of bridge steel members that are prone to buckling in construction stage,and the buckling position can be reflected by the change rule of  . Analysis suggests that the   of the vulnerable position rises first with the change of load and then drops before the component yields. The easy buckling position can be distinguished by the regularity of change, and by the time of the beginning of the descent, the buckling can be warned to prevent the occurrence of disasters. This study provides an effective method for the instability monitoring of steel structures during construction.
Keywords: Structural health monitoring; parameterized characterization of buckling; metal magnetic memory; steel box girder with corrugated web; nondestructive testing

关键词

结构健康监测 / 屈曲参数表征 / 金属磁记忆 / 波纹腹板钢箱梁 / 无损检测

Key words

Structural health monitoring / parameterized characterization of buckling / metal magnetic memory / steel box girder with corrugated web / nondestructive testing

引用本文

导出引用
韦璐茜1,苏三庆2,王威2,严敏嘉1. 钢箱梁受弯屈曲的磁记忆参数表征[J]. 振动与冲击, 2022, 41(16): 142-148
WEI Luxi1,SU Sanqing2,WANG Wei2,YAN Minjia1. Characterization of buckling of a steel box girder under bending using parameter of magnetic memory[J]. Journal of Vibration and Shock, 2022, 41(16): 142-148

参考文献

[1]   吉伯海,袁周致远. 钢箱梁疲劳开裂维护研究现状[J]. 工业建筑,2017, 47(05): 1-5+11.
JI Bohai, YUAN Zhouzhiyuan. State of the art of fatigue cracking maintenance for steel box grider[J]. Industrial Construction, 2017, 47(05): 1-5+11.
[2] 李立峰. 正交异性钢箱梁局部稳定分析理论及模型试验研究[D]. 长沙:湖南大学,2005.
LI Lifeng. The Analytical Theory and Model Test Researeh
On Local Stability of orthotropic Steel Box Girder[D]. Changsha: Hunan University, 2005. 
[3] 邓长根,吴建华,甘东华. 钢结构失稳监测方法和失稳监控部件研究[J]. 建筑科学与工程学报,2006, 23(03): 21-25. 
DENG Changgen, WU Jianhua, GAN Donghua. Research on Instability Monitoring Methods and Instability Monitoring Components for Steel Structures[J]. Journal of Architecture and Civil Engineering, 2006, 23(03): 21-25.
[4]   孙凯,孟光,李富才,等. 基于弹性导波的厚钢梁结构的损伤检测[J]. 振动与冲击, 2009, 28(12): 110-113.
SUN Kai, MENG Guang, LI Fucai, et al. Damage detection in thick steel beam based on elastic guided wave[J]. Journal of vibration and shock, 2009, 28(12): 110-113.
[5] Dubov A A. A study of metal properties using the method of magnetic memory[J]. Metal Science & Heat Treatment, 1997, 39(9): 401-405.
[6] Dubov A A. Screening of Weld Quality Using the Magnetic Metal Memory Effect [J].Welding in the world, 1998, 41(3): 196-199.
[7]   张军,朱晟桢,毕贞法,等. 基于金属磁记忆效应的高铁轮对早期故障检测[J]. 仪器仪表学报,2019, 39(1): 162-170.
ZHANG Jun, ZHU Shengzhen, BI Zhenfa, et al. Early fault detection in high-speed wheel set based on the magnetic memory effects[J]. Chinese Journal of Scientific Instrument, 2019, 39(1): 162-170.
[8] 杨茂,周建庭,张洪,等. 混凝土内部钢筋锈蚀的磁记忆检测[J]. 建筑材料学报,2018, 21(2): 345-350.
YANG Mao, ZHOU Jianting, ZHANG Hong, et al. Magnetic Memory Detection of Rebar Corrosion in Concrete[J]. JOURNAL OF BUIDING MATERIALS, 2018, 21(2): 345-350.
[9] 易方,李著信,苏毅,等. 基于改进型小波阈值的输油管道磁记忆信号降噪方法[J]. 石油学报, 2009, 30(1): 141.
Yi Fang, Li Zhuxin, Su Yi, et al. Denoising algorithm for metal magnetic memory signals of oil pipeline based on improved wavelet threshold[J]. Acta Petrolei Sinica, 2009, 30(1): 141.
[10] 刘磊,舒迪,董炳义,等. 金属磁记忆技术在无缝钢轨温度应力检测中的研究[J]. 铁道工程学报, 2010(11): 56.
Liu Lei, Shu Di, Dong Bing Yi, et al. Research on application of metal magnetic memory technology in testing temperature stress of seamless rail[J]. Journal of Railway Engineering Society, 2010(11): 56.
[11] 王欢,陈厚桂,康宜华,等. 钢丝绳疲劳的磁记忆检测系统[J]. 无损检测, 2006, 28(2): 78.
Wang Huan, Chen Hou Gui, Kang Yi Hua, et al. Magnetic memory testing system for fatigue of wire ropes[J].
Nondestructive Testing, 2006, 28(2): 78.
[12] 胡先龙,池永滨. 磁记忆诊断技术中应力集中水平定量评估方法[J]. 华北电力技术, 2005, (6): 9.
Hu Xian Long, Chi Yong Bin. Quantitative evaluation method of stress concentration in magnetic memory diagnosis Technique. North China Electr Power, 2005, (6): 9 .
[13] Huang H H, Jiang S L, Yang C, et al. Stress concentration impaction the magnetic memory signal of ferromagnetic structural steel[J]. Nondestruct Test Eval, 2014, 29(4): 377.
[14] 王威,任英子,苏三庆,等. 钢箱梁竖向波纹腹板剪力与磁记忆场强关系的试验研究[J]. 西安建筑科技大学学报:自然科学版, 2019, 51(3): 327.
Wang Wei, Ren YingZi, Su San Qing, et al. Experimental research on the relationship between shear force and magnetic memory fieldstrength of vertical corrugated webs of steel box girder[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2019, 51(3): 327.
[15] Bao S, Fu M L, Lou H J, et al. Evaluation of stress concentration of a low-carbon steel based on residual magnetic field measurements[J]. Insight - Non-Destruct Test Condition Monitor, 2016, 58(12): 678.
[16] Yao K, Deng B, Wang Z D. Numerical studies to signal characteristics with the metal magnetic memory-effect in plastically deformed samples[J]. NDT & E International, 2012, 47: 7.
[17] 冯鹏,强翰霖,叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(03): 36-46.
FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield point of materials, members and structures[J]. ENGINEERING MECHANICS, 2017, 34(03): 36-46.
[18] JILES D C, ATHERTON D L. Theory of the magnetization process in ferromagnets and its application to the magnetomechannical effect [J]. Journal of PhysicsD-Applied Physics, 1984, 17(6): 1265-1281.
[19] SABLIK M J, RILEY L A, BURKHARDT G L, et al. Micromagnetic model for the influence of biaxial stress on hysteretic magnetic properties[J]. Journal of Applied Physics, 1994, 75(10): 5673-5675.
[20] 任吉林, 林俊明. 金属磁记忆检测技术[M]. 北京: 中国电力出版社, 2007: 32-33.
REN jilin, LIN junming. Fundamental theory of electromagnetism[M]. Beijing: China Electric Power Press, 2007: 32-33.
[21] MA X P, SU S Q, WANG W, et al. Damage location and numerical simulation for steel wire under torsion based on magnetic memory method[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 1: In Press.
[22] WANG Z D, DENG B and YAO K. Physical model of plastic deformation on magnetization in ferromagnetic materials [J]. Journal of applied physics, 2011, 083928: 109-115.

PDF(2073 KB)

227

Accesses

0

Citation

Detail

段落导航
相关文章

/