在航空发动机管路设计阶段,优化卡箍的支撑位置可使管路有效避开转子激振频率进而实现降低管路振动的目标。本文以L型管路为对象,研究了创建管路有限元模型及实现以避振为目标的卡箍支撑位置优化的方法。首先,提出了“以直代曲”的L型管路有限元建模方法,在此基础上用弹簧对模拟卡箍的支撑,创建了管路系统的动力学有限元模型。接着,以卡箍位置为设计变量,以激振频率与管路1阶固有频率的差值为目标函数,创建了以避振为目标的卡箍支撑位置优化模型。再则,描述了基于遗传算法求解该优化模型的具体流程。最后,以安装3个卡箍的L型管路为对象进行了实例研究,用实验校验了所提出的有限元建模方法的合理性,进一步通过执行优化确定了可以实现避振的最优的卡箍位置。同时,进行了卡箍的“安全域”分析,确定了各卡箍满足避振条件下的可移动范围。
关键词:L型管路;有限元建模;动力学;遗传算法;卡箍位置优化
Abstract
In the stage of aero-engine pipeline design, optimizing the supporting position of the hoop can effectively avoid the excitation frequency of the rotor, so as to achieve the goal of reducing pipeline vibration. In this paper, taking the L-type pipeline as the object, the method of establishing the finite element model of the L-type pipeline and realizing the optimization of the hoop supporting position with the goal of avoiding vibration are studied. Firstly, the finite element modeling method of "simulating curved beam with straight beam" for L-type pipeline is proposed. On this basis, the dynamic finite element model of the pipeline system is established by using the springs to simulate the supporting effect of hoop. Then, taking the position of the hoop as the design variable and the difference between the excitation frequency and the first natural frequency of the pipeline as the objective function, an optimization model of the hoop supporting position is established to avoid vibration. Furthermore, the specific process of solving the optimization model based on genetic algorithm is described. Finally, an L-type pipeline with three hoops is taken as an example to verify the rationality of the proposed finite element modeling method. Furthermore, by performing optimization calculation, the optimal hoop position is determined to avoid vibration. At the same time, the "safe region" of hoop is analyzed, and the movable range of each hoop under the condition of vibration avoidance is determined.
Key words: L-type pipeline; finite element modeling; dynamics; genetic algorithm; optimization of hoop position.
关键词
L型管路 /
有限元建模 /
动力学 /
遗传算法 /
卡箍位置优化
{{custom_keyword}} /
Key words
L-type pipeline /
finite element modeling /
dynamics /
genetic algorithm /
optimization of hoop position.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 彭刚,于乃江,贾文强. 航空发动机外部管路的结构与动力学特征参数分析[J]. 航空发动机,2017,(5): 1-6.
PENG Gang, YU Naijiang, JIA Naiqiang. Analysis of structural and dynamic characteristic parameters of aeroengine external pipeline [J]. Aeroengine, 2017, (5): 1-6.
[2] 冯凯,郝勇,廉正彬. 航空发动机外部管路调频的有限元计算方法[J]. 航空发动机,2010, (1): 31-33,19.
FENG Kai, HAO Yong, LIAN Zhengbin. Finite element analysis method of frequency modulation for aeroengine external lines [J]. Aeroengine, 2010, (1): 31-33,19.
[3] WU J S, CHIANG L K. Free vibration of a circularly curved Timoshenko beam normal to its initial plane using finite curved beam elements[J]. Computers and Structures, 2004, 82(29): 2525-2540.
[4] FONSECA E.M.M, DE MELO F.J.M.Q. Numerical solution of curved pipes submitted to in-plane loading conditions. Thin-Walled Struct, 2009, 48(2): 103–109.
[5] ZHAI H B, WU Z Y, LIU Y S, et al. Dynamic response of pipeline conveying fluid to random excitation[J]. Nuclear Engineering and Design, 2011, 241(8): 2744-2749.
[6] GAO P X, ZHAI J Y, YAN Y Y, et al. A model reduction approach for the vibration analysis of hydraulic pipeline system in aircraft[J]. Aerospace Science and Technology, 2016, 49: 144-153.
[7] ZHANG Z, ZHOU C C, WANG W X, et al. Optimization design of aeronautical hydraulic pipeline system based on non-probabilistic sensitivity analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2019, 233(5): 815-825.
[8] 李鑫,王少萍. 基于卡箍优化布局的飞机液压管路减振分析[J]. 振动与冲击, 2013,(1): 14-20.
LI Xin, WANG Shaoping. Vibration control analysis for hydraulic pipelines in an aircraft based on optimized clamp layout[J]. Journal of Vibration and Shock, 2013, (1):14-20.
[9] 权凌霄,张琦玮,李长春,等. 航空液压管路支架参数灵敏度分析及优化[J]. 液压与气动, 2017, (8): 95-99.
QUAN Lingxiao, ZHANG Qiwei, Li Changchun, et al. Sensitivity analysis and optimization for support parameter of aviation hydraulic pipeline [J]. Chinese Hydraulics & Pneumatics, 2017, (8): 95-99.
[10] TANG Z C, LU Z Z, LI D W,et, al. Optimal design of the positions of the hoops for a hydraulic pipelines system[J]. Nuclear Engineering and Design, 2011, 241(12): 4840-4855.
[11] 陈艳秋,朱梓根.基于遗传算法的航空发动机管路优化设计[J].航空动力学报,2002,(4): 421-425.
CHEN Yanqiu, ZHU Zigen. Piping System Design of Aero-Engine Using Genetic Algorithms[J]. Journal of Aerospace Power,2002,(4): 421-425.
[12] 翟红波,刘永寿,李宝辉,等.基于动强度可靠性的输流管道动力优化设计[J].西北工业大学学报,2011,(6): 992-997.
ZHAI Hongbo, LIU Yongshou, LI Baohui. A New and Better Optimized Design Based on Dynamic Strength Reliability for Liquid Conveying Pipeline[J]. Journal of Northwestern Polytechnical University, 2011, (6): 992-997.
[13] ZHANG X T, LIU W, ZHANG Y M, et al. Experimental Investigation and Optimization Design of Multi-Support Pipeline System[J]. Chinese Journal of Mechanical Engineering,2021,34(1): 1-15..
[14] 刘伟,曹刚,翟红波,等.发动机管路卡箍位置动力灵敏度分析与优化设计[J].航空动力学报,2012,(12): 2756-2762.
LIU Wei, CAO Gang, ZHAI Hongbo, et al. Sensitivity analysis and dynamic optimization design of supports' positions for engine pipelines[J]. Journal of Aerospace Power,2012,(12): 2756-2762.
[15] GUO X M, MA H, ZHANG X F, YE Z, FU Q, LIU Z H, HAN Q K.Uncertain Frequency Responses of Clamp-Pipeline Systems Using an Interval-Based Method[J]. IEEE Access,2020,8: 29370-29384.
[16] 高晔,孙伟,马辉.基于实测扫频响应反推管路卡箍支承刚度及阻尼[J].振动与冲击,2020,39(08):58-63.
GAO Ye, SUN Wei, MA Hui. Inverse identification of the pipeline support stiffness and damping of the hoop based on the measured sweep frequency response[J]. Journal of Vibration and Shock,2020,39(08):58-63.
[17] 中华人民共和国工业和信息化部. 民用飞机液压管路系统设计和安装要求: HB 8459-2014[S]. 北京:中国航空综合技术研究所, 2014.
[18] HE G X, CHEN D,LIAO K X, et al. A methodology for the optimal design of gathering pipeline system in old oilfield during its phased development process.[J]. Computers & Industrial Engineering, 2019, 130: 14-34.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}