基于隐式Adams方法的螺旋曲面铣削系统稳定性预测研究

杨赫然,耿超绪,孙兴伟,董祉序

振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 158-166.

PDF(2329 KB)
PDF(2329 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 158-166.
论文

基于隐式Adams方法的螺旋曲面铣削系统稳定性预测研究

  • 杨赫然,耿超绪,孙兴伟,董祉序
作者信息 +

A study on the prediction of a spiral surface milling system stability based on the implicit Adams method

  • YANG Heran,GENG Chaoxu,SUN Xingwei,DONG Zhixu
Author information +
文章历史 +

摘要

针对螺杆转子铣削过程中的铣削系统稳定性进行研究。首先通过模态实验获取刀具的模态参数。其次,根据盘铣刀铣削螺杆转子曲面原理建立三自由度铣削力模型和以线性时滞微分方程表示再生型颤振影响的铣削加工动力学模型,并对刀齿铣削周期进行离散。然后,提出基于隐式Adams对螺旋曲面铣削系统稳定性进行预测的方法,在利用隐式Adams方法对动力学方程进行数值求解的基础上,依据Floquet理论判断系统的稳定性,获得螺旋曲面铣削系统的稳定性叶瓣图。最终,根据稳定性叶瓣图选取加工参数进行实验,验证隐式Adams方法在螺旋曲面铣削系统的适用性。实验结果表明:数值求解结果与实验结果吻合程度较高,即采用的隐式Adams方法适用于螺旋曲面铣削系统的稳定性预测。
关键词:螺杆转子;铣削加工;模态分析;Adams方法;Floquet理论

Abstract

The stability of the milling system during the milling process of the screw rotor is studied. First obtain the modal parameters of the tool through modal experiments. Secondly, a three-degree-of-freedom milling force model and a milling dynamics model expressing the effect of regenerative chatter vibration with linear time-lag differential equations are established based on the principle of milling screw rotor surfaces with disc milling cutters, and the cutter tooth milling cycle is discreted. Thirdly, a method based on implicit Adams is proposed to predict the stability of the spiral surface milling system. On the basis of solving the dynamic equation by implicit Adams, the stability of the system is judged according to Floquet theory, and the stability lobe diagram of the spiral surface milling system is obtained. Finally, the processing parameters are selected according to the stability lobe diagram to verify the applicability of the implicit Adams method in the helical surface milling system. The experimental results show that the numerical results are in good agreement with the experimental results, that is, the implicit Adams method is suitable for the stability prediction of spiral surface milling system.
Keywords:Screw rotor ;milling processing; modal analysis; Adams method; Floquet theory

关键词

螺杆转子 / 铣削加工 / 模态分析 / Adams方法 / Floquet理论

Key words

Screw rotor ;milling processing / modal analysis / Adams method / Floquet theory

引用本文

导出引用
杨赫然,耿超绪,孙兴伟,董祉序. 基于隐式Adams方法的螺旋曲面铣削系统稳定性预测研究[J]. 振动与冲击, 2022, 41(16): 158-166
YANG Heran,GENG Chaoxu,SUN Xingwei,DONG Zhixu. A study on the prediction of a spiral surface milling system stability based on the implicit Adams method[J]. Journal of Vibration and Shock, 2022, 41(16): 158-166

参考文献

[1] 岳彩旭,郝小乐,王彦武,等.基于瞬时铣削力系数法的拼接模具铣削稳定性研究[J].振动与冲击,2019,38(21):71-79.
YUE Caiyue,HAO Xiaole,WANG Yanbin,et al. Milling stability of splicing dies based on instantaneous milling force coefficient method[J]. Journal of Vibration and Shock, 2019,38(21):71-79.
[2] BENAROYA, HAY M. Mechanical vibration: Analysis, uncertainties, and control [M].3rd ed. London: Prentice Hall, 2010.
[3] 卢晓红,杨昆,栾贻函,等.薄壁铣削加工颤振稳定性研究综述[J].振动与冲击,2021,40(8):50-61+69.
LU Xiaohong, YANG Kun,LUAN Yihan, et al. A review on chatter stability in thin-wall milling [J]. Journal of Vibration and Shock, 2021,40(8):50-61+69.
[4] QUINTANA G, CIURANA J. Chatter in machining processes: A review [J]. International Journal of Machine Tools & Manufacture, 2011, 51(5):363-376.
[5] ALTINTAS Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design [M]. Cambridge: Cambridge University Press, 2012.
[6] 李广伦,姜兆亮,赵丽,等.铝合金薄板的铣削动力响应特性仿真与实验研究[J].振动与冲击,2020,39(11):63-68+145.
LI Guanglun, JIANG Zhaoliang, ZHAO Li, et al. Simulation and experimental study on dynamic response of milling aluminum alloy thin plate[J]. Journal of Vibration and Shock, 2020,39(11):63-68+145.
[7] 任勇生,马伯乐,马静敏.考虑刀杆结构非线性的铣削过程颤振稳定性与主共振[J].振动与冲击,2019,38(23):62-69.
REN Yongsheng, MA Bole,MA Jingmin. Flutter stability and main resonance of a milling system considering structural nonlinearity of cutter bar[J]. Journal of Vibration and Shock, 2019,38(23):62-69.
[8] 于福航,李茂月,严复钢,等.一种基于多步回溯算法的铣削稳定性预测方法[J].振动与冲击,2021,40(1):102-109.
YU Fuhang, LI Maoyue, YAN Fugang, et al. A prediction method of milling stability based on multi-step backtracking algorithm[J]. Journal of Vibration and Shock, 2021,40(1):102-109.
[9] INSPERGER T, STEPAN G. Semi-discretization method for delayed systems[J]. International Journal for Numerical Methods in Engineering, 2002, 55(5): 503-518
[10] INSPERGER T, STEPAN G. Updated semi-discretization method for periodic delay-differential equations with discrete delay[J]. International Journal for Numerical Methods in Engineering, 2004, 61(1): 117-141.
[11] INSPERGER T, STEPAN G, TURI J. On the higher-order semi-discretization for periodic delayed systems[J]. Journal of Sound & Vibration,2015,313(1): 334-341.
[12] NIU J, DING Y, ZHU L, et al. Runge-Kutta methods for a semi-analytical prediction of milling stability[J]. Nonlinear Dynamics, 2014, 76(1): 289-304.
[13] LI M, ZHANG G, HUANG Y. Complete discretization scheme for milling stability prediction [J]. Nonlinear Dynamics, 2013, 71(1/2): 187-199.
[14] DING Y, Zhang X, DING H, et al. Numerical integration method for prediction of milling stability[J]. Journal of Manufacturing Science and Engineering, 2011, 133(3):31005.
[15] ZHANG X, XIONG C, DING Y, et al. Variable step integration method for milling chatter stability prediction with multiple delays[J]. Science China Technological Sciences, 2011, 54(12): 3137-3154.
[16] DING Y, ZHU L M, ZHANG X J, et al. A full-discretization method for prediction of milling stability [J]. International Journal of Machine Tools & Manufacture, 2010, 50(5): 502-509.
[17] DING Y, ZHU L M, ZHANG X J, et al. Second-order full-discretization method for milling stability prediction[J]. International Journal of Machine Tools &Manufacture, 2010, 50: 926-932.
[18] GUO Q, SUN Y W, JIANG L L. On the accurate calculation of milling stability limits using third-order full-discretization method[J]. International Journal of Machine Tools & Manufacture, 2012, 62(1): 61-66.
[19] ZHANG Z, LI H G, Meng G, et al. A novel approach for the prediction of the milling stability based on the Simpson method[J]. International Journal of Machine Tools & Manufacture, 2015, 99: 43-47.
[20] BUDAK E. Analytical prediction of chatter stability in milling-part I: General formulation [J]. Journal of Dynamic Systems Measurement & Control, 1998, 120(1): 31-36.
[21] ALTINTAS Y, BUDAK E. Analytical prediction of stability lobes in milling[J]. CIRP Annals-Manufacturing Technology, 1995, 44(1): 357-362.
[22] MERDOL S D, ALTINTAS Y. Multi frequency solution of chatter stability for low immersion milling[J]. Transactions of the ASME. Journal of Manufacturing Science and Engineering, 2004, 126(3): 459-466.
[23] BACHRATHY D, STEPAN G. Improved prediction of stability lobes with extended multi frequency solution[J]. CIRP Annals-Manufacturing Technology, 2013, 62(1): 411-414.
[24] 智红英,闫献国,杜娟,等.预测铣削稳定性的隐式Adams方法[J].机械工程学报,2018,54(23):223-232.
ZHI Hong-ying, YAN Xian-guo, DU Juan, et al. Implicit Adams method for predicting milling stability [J]. Chinese Journal of Mechanical Engineering, 2018, 54(23): 223-232.
[25] 窦炜,袁胜万,何晓聪.一种改进的螺旋齿铣刀立铣切削力计算方法[J].振动与冲击,2018,37(10):181-186+207.
DOU Wei, YUAN Shengwan, HE Xiaocong. Improved method for calculating the cutting force of end milling with helical tools [J]. Journal of Vibration and Shock, 2018,37(10):181-186+207..

PDF(2329 KB)

296

Accesses

0

Citation

Detail

段落导航
相关文章

/