橡胶混凝土道床动力特性的足尺实验分析

金浩1,田清荣2,李政2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 249-254.

PDF(1602 KB)
PDF(1602 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 249-254.
论文

橡胶混凝土道床动力特性的足尺实验分析

  • 金浩1,田清荣2,李政2
作者信息 +

Full-scale experiment on dynamic characteristics of tunnel invert using rubberized concrete

  • JIN Hao1, TIAN Qingrong2, LI Zheng2
Author information +
文章历史 +

摘要

随着大量地铁线路的开通运营,轨道振动问题日益受到关注。本文针对橡胶混凝土道床,构建足尺实验平台。通过动力实验,对2%橡胶混凝土道床和普通混凝土道床进行频谱、振动加速度级、传递损失、插入损失、分频振级均方根差值等评价指标分析,得出以下结论:(1)橡胶混凝土道床的减振频段主要为1~63Hz低频段。(2)1~200Hz频段,采用橡胶混凝土道床的传递损失普遍大于普通混凝土道床。(3)1~100Hz频段,采用橡胶混凝土道床的隧道壁插入损失普遍为正值。(4)对比橡胶混凝土道床和普通混凝土道床,隧道壁测点的分频振级均方根差值约1.9dB。本文为橡胶混凝土道床在地铁中应用提供了实验数据支撑。
关键词:地铁;轨道振动;橡胶混凝土;道床;足尺实验

Abstract

With the opening and operation of a large number of subway lines, the problem of railway vibration has been paid more and more attention. In this paper, a full-scale platform of tunnel invert is constructed. Through the vibration experiment, vibration acceleration spectrum, vibration acceleration level, transfer loss, insertion loss was analyzed. The results show that: (1) the vibration reduction frequency of rubberized concrete is mainly in 1 to 63Hz. (2) In 1 to 200Hz, the transfer loss of rubberized concrete is generally greater than that of traditional concrete. (3) In 1 to 100Hz, the insertion loss of rubberized concrete is generally positive. (4) Compared rubberized concrete and traditional concrete, the difference of mean square root of vibration level at the tunnel wall is about 1.9dB. This paper provides the experimental data for the application of rubberized concrete in subway.
Key words:Subway; Track vibration; Rubberized concrete; Tunnel invert; Full-scale experiment

关键词

地铁 / 轨道振动 / 橡胶混凝土 / 道床 / 足尺实验

Key words

Subway / Track vibration / Rubberized concrete / Tunnel invert / Full-scale experiment

引用本文

导出引用
金浩1,田清荣2,李政2. 橡胶混凝土道床动力特性的足尺实验分析[J]. 振动与冲击, 2022, 41(16): 249-254
JIN Hao1, TIAN Qingrong2, LI Zheng2. Full-scale experiment on dynamic characteristics of tunnel invert using rubberized concrete[J]. Journal of Vibration and Shock, 2022, 41(16): 249-254

参考文献

[1] 丁德云, 刘维宁, 张宝才, 等. 浮置板轨道的模态分析[J]. 铁道学报. 2008(3): 61-64.
DING Deyun, LIU Weining, ZHANG Baocai, et al. Modal analysis on the floating slab track[J]. Journal of the China Railway Society, 2008, 30(3) : 61-64.
[2] H. Jin, W. Liu, S. Zhou. An experiment to assess vibration reduction ability of the rubber floating-slab tracks with different supporting forms[J]. Journal of Vibroengineering. 2015, 17(6): 3237-3246.
[3] 金浩, 刘维宁. 枕下减振垫铺设方式对梯式轨道减振性能影响试验研究[J]. 土木工程学报. 2015, 48(2): 73-78.
JIN Hao, LIU Weining. Experimental study on vibration reduction characteristics of ladder track with different arrangement of sleeper pads[J]. China Cicil Engineering Journal, 2015, 48( 2) : 73-78.
[4] 李克飞, 刘维宁, 孙晓静, 等. 北京地铁5号线地下线减振措施现场测试与分析[J]. 铁道学报. 2011, 33(4): 112-118.
Li Kefei, Liu Weining, Sun Xiaojing, et al. In-situ test of vibration attenuation of underground line of Beijing metro line 5[J]. Journal of the China Railway Society, 2011, 33( 4) : 112-118
[5] 朱涵, 李威, 朱学超. 常、低温下橡胶集料混凝土抗冲击性能研究[J]. 石家庄铁道大学学报(自然科学版). 2017, 30(2): 24-30.
Zhu Han, Li Wei, Zhu Xuechao. Research on performance of crumb rubber concrete under room and low temperature impact [J]. Journal of the Shijiazhuang tiedao university(natural science edition), 2017, 30(2) : 24-30
[6] 郭永昌, 刘锋, 陈贵炫, 等. 橡胶混凝土的冲击压缩试验研究[J]. 建筑材料学报. 2012, 15(1): 139-144.
GUO Yongchang, LIU Feng, CHEN Guixuan, et al. Experimental study on impact compression of rubber concrete[J]. Journal of the Building Materials, 2012, 15(1) : 139-144.
[7] 闻洋, 刘培培. 橡胶混凝土抗冲击性能研究[J]. 硅酸盐通报. 2018, 37(3): 792-799.
WEN Yang, LIU Peipei. Impact resistance research on rubberized concrete[J]. Bulletin of the Chinese ceramic society, 2018, 37(3) : 792-799.
[8] 宋少民, 刘娟红, 金树新. 橡胶粉改性的高韧性混凝土研究[J]. 混凝土与水泥制品. 1997(1): 10-11.
SONG Shaomin, LIU Juanhong, JIN Shuxin. Research on rubber powder modified and high toughness concrete[J]. China Concrete and Cement Products, 1997(1) : 10-11.
[9] A.O. Atahan, U.K. Sevim. Testing and comparison of concrete barriers containing shredded waste tire chips[J]. Materials Letters. 2008, 62(21-22): 3754-3757.
[10] 黄政宇, 江伏, 肖岩, 等. 橡胶粉混凝土动力抗压性能试验研究[J]. 自然灾害学报. 2007(5): 135-142.
HUANG Zhengyu, JIANG Fu, XIAO Yan, et al. Experimental investigation on the dynamic compressive behavior of rubberized concrete[J]. Journal of Natural Disasters, 2007(5) : 135-142.
[11] 许金余, 李赞成, 罗鑫, 等. 橡胶混凝土的静动压缩强度特性的对比研究[J]. 建筑材料学报. 2014, 17(6): 1015-1019.
XU Jinyu, LI Zancheng, LUO Xin, et al. A comparative study of the static and dynamic compression strength of rubber powder concrete[J]. Journal Building Materials, 2014, 17(6) : 1015-1019.
[12] M. Rahman, A. Al-Ghalib, F. Mohammad. Anti-vibration characteristics of rubberized reinforced concrete beams[J]. Materials and Structures. 2014, 47(11): 1807-1815.
[13] M.C. Bignozzi, F. Sandrolini. Tyre rubber waste recycling in self-compacting concrete[J]. Cement and Concrete Research. 2006, 36(4): 735-739.
[14] L. Zheng, X.S. Huo, Y. Yuan. Experimental investigation on dynamic properties of rubberized concrete[J]. Construction and Building Materials. 2008, 22(5): 939-947.
[15] 金浩. 基于改进蚁群算法梯式轨道及橡胶混凝土隔振基础优化研究[D]. 北京交通大学, 2013.
JIN Hao. Optimization research of ladder track and its CRC foundation based on an improved ant colony algorithm[D]. Beijing Transportation University, 2013.
[16] 孙晓静, 冯红喜. 橡胶混凝土整体道床减振性能分析[J]. 土木工程学报. 2017, 50(S1): 42-46.
SUN Xiao, FENG Hongxi. Vibration reduction performance of the rubber concrete monolithic roadbed[J]. China Civil Engineering Journal, 2017, 50(S1) : 42-46.
[17] 李彬. 橡胶混凝土减振道床材料性能试验研究及减振效果预测[D]. 北京交通大学, 2017.
LI Bing. Material property test and vibration reduction performance prediction of rubberized concrete roadbed[D]. Beijing Transportation University, 2017.
[18] 谭诗宇. 基于橡胶混凝土的铁路隧道减振研究[J]. 铁道勘察. 2019(3): 52-55.
TAN Shiyu. Research on vibration reduction of railway tunnel based on rubber concrete[J]. Railway Investigation and Surveying 2019(3) : 52-55.

PDF(1602 KB)

375

Accesses

0

Citation

Detail

段落导航
相关文章

/