基于Tube的挠性航天器模型预测姿态控制及主动振动控制

管萍,吴希岩,戈新生

振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 261-270.

PDF(1947 KB)
PDF(1947 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 261-270.
论文

基于Tube的挠性航天器模型预测姿态控制及主动振动控制

  • 管萍,吴希岩,戈新生
作者信息 +

Tube-based model predictive attitude control and active vibration control for flexible spacecraft

  • GUAN Ping, WU Xiyan, GE Xinsheng
Author information +
文章历史 +

摘要

针对大角度姿态机动的挠性航天器,将基于“管道”(Tube)的模型预测控制(Tube-based model predictive control,Tube-MPC)应用于挠性航天器的姿态控制中。首先,对不考虑扰动的挠性航天器的标称系统设计模型预测控制律,求解模型预测控制问题以确定飞行姿态角的标称轨迹。然后,针对带有扰动的挠性航天器的实际系统,将挠性附件振动和外部扰动作为复合扰动,设计辅助控制器使实际系统状态处于以标称轨迹为中心的Tube不变集内,驱使实际系统状态到达标称轨迹上,并沿着标称轨迹最终收敛于原点。基于Tube的模型预测姿态控制器在满足控制输入约束条件下能有效处理扰动,从而实现对姿态角指令的有效跟踪。同时,针对姿态机动过程引起的挠性附件振动,采用压电智能材料,设计了全阶滑模主动振动控制器。全阶滑模控制器可有效减少抖振,从而使挠性振动模态能够在有限时间内快速衰减。仿真结果表明,所设计的基于Tube的模型预测姿态控制器与全阶滑模主动振动控制器能有效地抑制挠性附件的振动和外界扰动,对姿态角指令有较好的跟踪性能。
关键词:挠性航天器;模型预测控制;滑模控制;姿态控制;主动振动控制

Abstract

Considering the large angle attitude maneuvering, a Tube-based model predictive control (Tube-MPC) scheme is applied to the attitude control of flexible spacecraft. The model predictive control law is designed for the nominal system without considering disturbance. The nominal trajectory of flight attitude angle is generated by a nominal optimal control problem. For the flexible spacecraft, the flexible appendage vibration and external disturbance are regarded as compound disturbances. The auxiliary controller is presented which can drive the system state into the Tube invariant set around nominal trajectory, steer the system state toward the nominal trajectory and finally converges to the origin along the nominal trajectory. The Tube-based model predictive attitude controller can effectively deal with disturbances and the control input constraints are satisfied. Thus, the attitude angle command can be tracked precisely. At the same time, considering the vibration of the flexible appendages caused by the attitude maneuvering process, a full-order sliding mode active vibration controller is designed based on piezoelectric smart materials. The full-order sliding mode controller can effectively reduce chattering, so that the flexible vibration mode can be rapidly attenuate in the finite time. The simulation results show that the designed Tube-based model predictive attitude controller and full-order sliding mode active vibration controller can successfully suppress the vibration of the flexible appendages, and have better tracking performance for the attitude angle command.
Key words: flexible spacecraft; model predictive control; sliding mode control; attitude control; active vibration control

关键词

挠性航天器 / 模型预测控制 / 滑模控制 / 姿态控制 / 主动振动控制

Key words

flexible spacecraft / model predictive control / sliding mode control / attitude control / active vibration control

引用本文

导出引用
管萍,吴希岩,戈新生. 基于Tube的挠性航天器模型预测姿态控制及主动振动控制[J]. 振动与冲击, 2022, 41(16): 261-270
GUAN Ping, WU Xiyan, GE Xinsheng. Tube-based model predictive attitude control and active vibration control for flexible spacecraft[J]. Journal of Vibration and Shock, 2022, 41(16): 261-270

参考文献

[1] 曹登庆, 白坤朝, 丁虎, 等. 大型柔性航天器动力学与振动控制研究进展[J]. 力学学报, 2019, 51(1): 1-13.
CAO Deng-qing, BAI Kun-chao, DING Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13.
[2] Sari N N, Jahanshahi H, Fakoor M. Adaptive fuzzy PID control strategy for spacecraft attitude control[J]. International Journal of Fuzzy Systems, 2019, 21(3): 769-781.
[3] 余臻,郭毓,王璐,吴益飞,郭健.基于期望补偿的挠性航天器自适应鲁棒主动振动控制[J].振动与冲击,2017,36(24):230-236.
YU Zhen, GUO Yu, WANG Lu, et al. Desired compensation adaptive robust active vibration control of flexible spacecraft[J]. Journal of Vibration and Shock, 2017,36(24):230-236.
[4] 刘福才,陈鑫,贾亚飞,刘彩凤.模糊自抗扰控制器在挠性航天器振动抑制中的应用[J].振动与冲击,2015,34(09):9-14.
LIU Fu-cai, CHEN Xin, JIA Ya-fei, et al. Application of fuzzy auto disturbance rejection controller in flexible spacecraft vibration suppression[J]. Journal of Vibration and Shock, 2015, 34(9): 9-14.
[5] 袁国平,史小平,李隆.航天器姿态机动的自适应鲁棒控制及主动振动抑制[J].振动与冲击,2013,32(12):110-115.
YUAN Guo-ping, SHI Xiao-ping, LI Long. Adaptive robust attitude maneuver control of a flexible spacecraft with active vibration suppression[J]. Journal of Vibration and Shock, 2013, 32(12): 110-115.
[6] 王璐,郭毓,吴益飞.SGCMGs驱动的挠性航天器有限时间自适应鲁棒控制[J].自动化学报,2021,47(03):641-651.
WANG Lu, GUO Yu, WU Yi-fei. Finite-time Adaptive Robust Control for SGCMGs-based Flexible Spacecraft[J].ACTA AUTOMATICA SINICA, 2021,47(03):641-651.
[7] 钟声,黄一,胡锦昌.深空探测航天器姿态的自抗扰控制[J].控制理论与应用,2019,36(12):2028-2034.
ZHONG Sheng, HUANG Yi, HU Jin-chang. Active disturbance rejection control for attitude control of deep space explorer[J]. Control Theory & Applications, 2019,36(12):2028-2034.
[8] Eren U , Prach A , Kocer B B , et al. Model Predictive Control in Aerospace Systems: Current State and Opportunities[J]. Journal of Guidance Control & Dynamics, 2017, 40(7):1541-1566.
[9] 席裕庚, 李德伟, 林姝. 模型预测控制—现状与挑战[J]. 自动化学报, 2013, 039(003):222-236.
XI Yu-geng, LI De-wei, LIN Shu. Model predictive control—status and challenges[J]. Acta Automatica Sinica, 2013, 39(3): 222-236.
[10] Golzari A , Pishkenari H N , Salarieh H , et al. Quaternion based linear time-varying model predictive attitude control for satellites with two reaction wheels[J]. Aerospace ence and Technology, 2020, 98:105677.
[11] Kim J, Jung Y, Bang H. Linear time-varying model predictive control of magnetically actuated satellites in elliptic orbits[J]. Acta Astronautica, 2018, 151: 791-804.
[12] Lee D Y, Gupta R, Kalabić U V, et al. Geometric mechanics based nonlinear model predictive spacecraft attitude control with reaction wheels[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 309-319.
[13] Felisiak P A, Sibilski K S, Qin K, et al. Nonlinear model predictive control of spacecraft relative motion[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(11): 3906-3919.
[14] 范国伟, 常琳, 戴路,等. 敏捷卫星姿态机动的非线性模型预测控制[J]. 光学精密工程, 2015, 023(008):2318-2327.
FAN Guo-wei, CHANG Lin, DAI Lu, et al. Nonlinear model predictive control of agile satellite attitude maneuver[J]. Optics and Precision Engineering, 2015, 23(8): 2318-2327.
[15] Mayne D Q, Kerrigan E C, Van Wyk E J, et al. Tube‐based robust nonlinear model predictive control[J]. International Journal of Robust and Nonlinear Control, 2011, 21(11): 1341-1353.
[16] Zhang C, Ma G, Sun Y, et al. Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression[J]. Nonlinear Dynamics, 2019, 96(3): 1909-1926.
[17] Xu S, Cui N, Fan Y, et al. Flexible satellite attitude maneuver via adaptive sliding mode control and active vibration suppression[J]. AIAA Journal, 2018, 56(10): 4205-4212.
[18] 张秀云,宗群,窦立谦,刘文静.柔性航天器振动主动抑制及姿态控制[J].航空学报,2019,40(04):238-247.
ZHANG Xiu-yun, ZONG Qun, DOU Li-qian, et al. Active vibration suppression and attitude control for flexible spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(04):238-247.
[19] Lu K , Xia Y . Adaptive attitude tracking control for rigid spacecraft with finite-time convergence[J]. Automatica, 2013, 49(12):3591–3599.
[20] Feng Y, Han F, Yu X. Chattering free full-order sliding-mode control[J]. Automatica, 2014, 50(4): 1310-1314.
[21] Zhang L, Xu S, Ju X, et al. Flexible satellite control via fixed-time prescribed performance control and fully adaptive component synthesis vibration suppression[J]. Nonlinear Dynamics, 2020, 100: 3413-3432.
[22] Rawlings J B, Mayne D Q, Diehl M. Model predictive control: theory, computation, and design[M]. Madison, WI: Nob Hill Publishing, 2017.
[23] Amato F , Ariola M . Finite-time control of discrete-time linear systems[J]. IEEE Transactions on Automatic Control, 2005, 50(5):724-729.
[24] Hu Q, Cao J, Zhang Y. Robust backstepping sliding mode attitude tracking and vibration damping of flexible spacecraft with actuator dynamics[J]. Journal of Aerospace Engineering, 2009, 22(2): 139-152.
[25] Hu Q. Robust adaptive sliding mode attitude control and vibration damping of flexible spacecraft subject to unknown disturbance and uncertainty[J]. Transactions of the Institute of Measurement and Control, 2012, 34(4): 436-447.

PDF(1947 KB)

Accesses

Citation

Detail

段落导航
相关文章

/