数传天线机电耦合建模及微振动特性仿真与实验研究

郑照明月1,2,程伟1,王光远3,李名1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 294-302.

PDF(1275 KB)
PDF(1275 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (16) : 294-302.
论文

数传天线机电耦合建模及微振动特性仿真与实验研究

  • 郑照明月1,2,程伟1,王光远3,李名1
作者信息 +

Electromechanical coupling modeling and micro vibration characteristics simulation and an experimental study of data transmission antenna

  • ZHENG Zhaomingyue1,2, CHENG Wei1, WANG Guangyuan3, LI Ming1
Author information +
文章历史 +

摘要

星载数传天线是航天器低频段微振动的主要扰振源,严重影响了遥感卫星成像质量。研究了一种以步进电机为驱动源的数传天线的微振动特性。通过线性化方法简化了步进电机的动力学方程,根据固定界面模态综合法建立了在柔性边界上步进电机驱动柔性负载的动力学模型,并给出了数传天线微振动的解析表达式。通过仿真和实验验证了上述微振动模型,分析了微振动的成因和影响因素。结果表明:实验和仿真得到的微振动频域峰值处的频率一致,幅值误差不超过9.41%。并且合理选择步进电机转速可有效降低数传天线的微振动。该模型可应用于在轨微振动预测、天线控制系统设计等领域。
关键词:数传天线;微振动;机电耦合;步进电机;固定界面模态综合法

Abstract

The micro vibration characteristics of a data transmission antenna driven by stepping motors are studied. The dynamic equation of the stepping motor is simplified by the linearization method. According to the Fixed Interface Mode Synthesis Method, the dynamic model of the stepping motor driving the flexible load on the flexible boundary is established, and the analytical expression of the micro vibration of the data transmission antenna is given. The above micro vibration model is verified by simulation and experiment, and the causes and influencing factors of micro vibration are analyzed. The results show that the frequency at the peak of frequency domain obtained by experiment and simulation is consistent, and the amplitude error is less than 9.41%. The micro vibration of data transmission antenna can be effectively reduced by reasonably selecting the velocity of stepper motor. The model can be used in the fields of on orbit micro vibration prediction and antenna control system design.
Key words: data transmission antenna; micro vibration; electromechanical coupling; stepping motor; Fixed Interface Mode Synthesis Method
 

关键词

数传天线 / 微振动 / 机电耦合 / 步进电机 / 固定界面模态综合法

Key words

data transmission antenna / micro vibration / electromechanical coupling / stepping motor / Fixed Interface Mode Synthesis Method

引用本文

导出引用
郑照明月1,2,程伟1,王光远3,李名1. 数传天线机电耦合建模及微振动特性仿真与实验研究[J]. 振动与冲击, 2022, 41(16): 294-302
ZHENG Zhaomingyue1,2, CHENG Wei1, WANG Guangyuan3, LI Ming1. Electromechanical coupling modeling and micro vibration characteristics simulation and an experimental study of data transmission antenna[J]. Journal of Vibration and Shock, 2022, 41(16): 294-302

参考文献

[1] Mingyi X, Chao Q, Xiaoming W, et al. Modeling and experimental study of dynamic characteristics of the moment wheel assembly based on structural coupling[J]. Mechanical Systems and Signal Processing. 2021, 146.
[2] 范亮,高晶波,王聪. 星载SAR天线高稳定度指标分配方法研究[J]. 振动与冲击. 2018, 37(18): 170-176.
FAN Liang, GAO Jing-bo, WANG Cong. Assignment method for the high stability index of a spaceborne SAR antenna[J]. Journal of vibration and shock. 2018, 37(18): 170-176.
[3] Shanbo C, Ming X, Jian X, et al. Design and experiment of dual micro-vibration isolation system for optical satellite flywheel[J]. International Journal of Mechanical Sciences. 2020, 179.
[4] 李雄飞,程伟. 基于频域子结构法的动量轮弹性边界微振动研究[J]. 振动与冲击. 2019, 38(03): 156-163.
Li Xiong-fei, CHENG Wei. Micro-vibration of RWA-flexible interface coupled system based on frequency domain substructure method[J]. Journal of vibration and shock. 2019, 38(03): 156-163.
[5] Zheng Z, Cheng W, Wang G. Analysis and experimental study on dynamic behavior of permanent magnet synchronous motor in driving flexible solar array[J]. Journal of Vibration and Control. 2020: 1802395819.
[6] Wang X, Xu Z, He S, et al. Modeling and analysis of a multi-degree-of-freedom micro-vibration simulator[J]. Shock and Vibration. 2017, 2017(4840514).
[7] Tao J, Zhang T, Nie Y. Attitude maneuvering and vibration reducing control of flexible spacecraft subject to actuator saturation and misalignment[J]. Shock and Vibration. 2018, 2018(3129834).
[8] Wei X, He L, Chen L. Retrodirective antenna for inter-satellite data transmission[J]. IEEE Access. 2020, 8: 89720-89726.
[9] Silverstein S D, Ashe J M, Kautz G M, et al. Tripulse: a system for determining orientation and attitude of a satellite borne active phased array[J]. IEEE Transactions on Aerospace and Electronic Systems. 2002, 38(1): 2-12.
[10] Li L, Shi R, Zhang X, et al. Design of motion controller for satellite-borne data transmission antenna[J]. International Journal of Aerospace Engineering. 2019, 2019: 1-11.
[11] Morar A. Drive system based on five-phase stepping motor under microstepping/nanostepping mode[J]. Procedia Technology, 2015: 19, 591-598.
[12] Kapun A, Hace A, Jezernik K. Identification of stepping motor parameters[C]. EUROCON 2007 - The International Conference on "Computer as a Tool".IEEE, 2007.
[13] Baluta G. Microstepping mode for stepper motor control[C] 2007 International Symposium on Signals, Circuits and Systems. Iasi :IEEE, 2007, 609-612.
[14] Tan H, Zhang J, Luo W. Design of DSP based multiple stepping-motors' micro-stepping driving controller[C] IEEE International Conference on Mechatronics. Warsaw: IEEE, 2005.
[15] 张文会. 星载对地数传天线结构设计分析与试验[D]. 西安电子科技大学, 2013.
ZHANG Wen-hui. Structural Design Analysis and Test of a Spaceborne Sata Transmission Antenna[D]. Xidian University, 2013.
[16] Wu S, Cheng W. Two-axes mechanism for satellite antenna disturbance characteristics simulation and experiment[J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics. 2011, 37(11): 1446-1450.
[17] Oh H, Jeon S, Kim T, et al. Experimental feasibility study for micro-jitter attenuation of stepper-actuated X-band antenna-pointing mechanism by using pseudoelastic SMA mesh washer[J]. Smart materials and structures. 2015, 24(4): 45010.
[18] Li L, Shi R, Zhang X, et al. Design of motion controller for satellite-borne data transmission antenna[J]. International Journal of Aerospace Engineering. 2019, 2019: 1-11.
[19] 刘辉,蒋新胜,温渊,等. 高分五号卫星数传天线高指向精度的分析与验证[J]. 上海航天. 2019, 36(S2): 24-29.
LIU Hui, JIANG Xin-sheng, WEN Yuan, et al. Analysis and verification of high pointing accuracy antenna for data transmission on GF-5 satellite[J]. Aerospace Shanghai. 2019, 36(S2): 24-29.
[20] 周勇,张剑. 数传跟踪天线驱动控制建模与仿真[J]. 中国空间科学技术. 2014, 34(06): 31-37.
ZHOU Yong, ZHANG Jian. Modeling and simulation of driving data transmission antenna[J]. Chinese Space Science and Technology. 2014, 34(06): 31-37.
[21] 宋建虎. 某高轨星载数传天线的振动分析[J]. 工程设计学报. 2019, 26(03): 274-279.
SONG Jian-hu. Vibration analysis of a data transmission antenna on high orbit satellite[J]. Chinese Journal of Engineering Design. 2019, 26(03): 274-279.
[22] Cao L, Zhou Z, Qu G. Flexible coupling dynamics modeling and simulation of variable configuration spacecraft oriented control[J]. Gongcheng Lixue/Engineering Mechanics. 2013, 30(8): 266-271.
[23] Yang Y, Cheng W, Wu S, et al. Experiment and simulation of electromagnetic stiffness for stepper motor[J]. Applied Mechanics & Materials, 2010, 29-32:1567-1573.
[24] 刘希刚. 航天器微振动集成建模与分析方法研究[D]. 哈尔滨工业大学, 2018.
LIU Xi-gang. Research on the integrated modeling and analysis technologies of micro-vibration on spacecraft[D]. Harbin Institute of Technology, 2018.
[25] Chen J, Cheng W, Li M. Modeling, measurement and simulation of the disturbance torque generated via solar array drive assembly[J]. Science China Technological Sciences. 2018, 61(4): 587-603.
[26] Sattar M, Wei C. Analysis of coupled torsional disturbance behavior of micro-stepped solar array drives[J]. Journal of Sound and Vibration. 2019, 442: 572-597.

PDF(1275 KB)

Accesses

Citation

Detail

段落导航
相关文章

/