为了研究移动点历经的湍流脉动风特性,设计了一套能够实现测量探针以均匀速度在流场中移动的试验系统,测量了不同风速-车速比(风速与移动点速度的 比值)下的湍流脉动特性,提出了半椭圆湍流积分尺度模型,分析了与静止点观测结果相比的湍流脉动风速谱及能谱的变化。研究结果表明:移动点测得的湍流脉动特性与静止点测量结果存在明显的不同。对于某一固定来流风速,随着移动点速度的增加,纵向湍流积分尺度减小,相比于Balzer及Cooper积分尺度模型,半椭圆模型的描述更加准确。基于半椭圆模型的脉动速度谱具有较高的精度,移动点历经的湍流谱能量因运动而重新分布,并表现出明显的Doppler效应。随着观测点移动速度的增加,脉动速度谱整体向更高的频率偏移,高频区域中的谱值增大,低频区域中的谱值减小,且能量向更高的波数区传递。
关键词:脉动风特性;湍流谱;湍流积分尺度;移动车辆;横风;风洞试验
Abstract
In order to study the turbulent fluctuation characteristics experienced at a moving point, a test system that can realize the measurement probe moving in the flow field at a uniform speed was designed, and the turbulent fluctuation characteristics at different speed ratio of the wind to the moving point was measured. A semi-elliptical turbulence integral scale model is proposed, the changes of the turbulent fluctuating wind speed spectrum and energy spectrum compared with the results at a stationary point are analyzed. The research results show that the turbulent fluctuation characteristics measured at a moving point are significantly different from those measured at a stationary point. For a certain incoming wind speed, as the speed of the moving point increases, the longitudinal turbulence integral scale decreases, and the description of the semi-elliptic model is more accurate compared with the Balzer's and Cooper's integral scale models. The fluctuating speed spectrum based on the semi-elliptic model has high accuracy. The turbulent energy spectrum experienced at a moving point is redistributed due to the movement, and it shows an obvious Doppler effect. As the moving speed of the observation point increases, the overall fluctuating speed spectrum shifts to higher frequencies, the spectral value increases in the high frequency region and decreases in the low frequency region, and the energy is transferred to the higher wavenumber region.
Key words: fluctuating wind characteristics; turbulence spectrum; turbulence integral scale; moving vehicle; crosswind; wind tunnel test
关键词
脉动风特性 /
湍流谱 /
湍流积分尺度 /
移动车辆 /
横风 /
风洞试验
{{custom_keyword}} /
Key words
fluctuating wind characteristics /
turbulence spectrum /
turbulence integral scale /
moving vehicle /
crosswind /
wind tunnel test
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 贺德馨. 风工程与工业空气动力学[M]. 北京: 国防工业出版社, 2006.
[2] 马存明, 段青松, 廖海黎. 横风作用下钢桁梁桥上列车气动导纳的风洞试验研究[J]. 振动与冲击, 2018, 37(2):150-155.
MA Cunming, DUAN Qingsong, LIAO Haili. Wind tunnel tests for aerodynamic admittances of trains on a steel truss bridge under crosswind[J]. Journal of Vibration and Shock. 2018, 37(2):150-155.
[3] 于梦阁, 张继业, 张卫华. 基于可靠性的高速列车横风安全性分析[J]. 振动与冲击, 2013, 32(20):90-96.
YU Mengge, ZHANG Jiye, ZHANG Weihua. Reliability-based operating safety analysis for high-speed trains under cross stochastic winds[J]. Journal of Vibration and Shock. 2013, 32(20):90-96.
[4] Baker, C.J. Ground vehicles in high crosswinds. Part II: Unsteady aerodynamic forces[J]. Journal of Fluids and Structures. 1991, 5:91-111.
[5] Baker, C.J. Ground vehicles in high crosswinds. Part III: The interaction of aerodynamic forces and the vehicle system[J]. Journal of Fluids and Structures. 1991, 5:221-241.
[6] 吴梦雪. 侧向风作用下风载突变效应对列车运行性能的影响研究[D]. 西南交通大学, 2015.
[7] 肖军. 侧风作用下高速列车非定常气动力及其行车安全性[D]. 西南交通大学, 2017.
[8] Connell, J. R. Turbulence spectrum observed by a fast-rotating wind-turbine blade[R]. Nasa Sti/recon Technical Report N, Report PNL-3426, Pacific Northwest Laboratory, Richland, 1980.
[9] Connell, J.R. The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system: observations and theory[R]. Nasa Sti/recon Technical Report N, Report PNL-4083, Pacific Northwest Laboratory, Richland, 1981.
[10] Shinozuka, M. Simulation of multivariate and multidimensional random processes[J]. Journal of the Acoustical Society of America, 1971, 49:357-368.
[11] Balzer, L.A. Atmospheric turbulence encountered by high-speed ground transport vehicles[J]. Journal Mechanical Engineering Science. 1977, 19:227-235.
[12] Cooper, R.K. Atmospheric turbulence with respect to moving ground vehicles[J]. Journal of Wind Engineering Industrial Aerodynamics. 1984, 17:215-238.
[13] ESDU Item No.85020. Characteristics of atmospheric turbulence near the ground. Part II: Single point data for strong winds (neutral atmosphere)[S]. Engineering Sciences Data Unit, London, 1985.
[14] 黄本才, 汪丛军. 结构抗风分析原理及应用(第二版)[M]. 上海: 同济大学出版社, 2008.
[15] 庞加斌, 葛耀君, 陆烨. 大气边界层湍流积分尺度的分析方法[J]. 同济大学学报(自然科学版), 2002, 30(5):622-626.
PANG Jiabin, GE Yaojun, LU Ye. Methods for analysis of turbulence integral length in atmospheric boundary-layer[J]. Journal of Tongji University (Natural science). 2002, 30(5):529-532.
[16] von Kármán, T. Progress in the statistical theory of turbulence[J]. Proceedings of the National Academy of Sciences of the United States of America. 1948, 34:530-539.
[17] Kaimal, J.C., Finnigan, J.J. Atmospheric boundary layer flows: Their structure and measurement[M]. Oxford Univ. Press, Oxford, p. 33-39, 1994.
[18] 李少鹏, 李明水, 曾加东, 等. 矩形断面抖振阻力空间分布特性试验研究[J]. 工程力学, 2017(01):139-144.
Li Shaopeng, Li Mingshui, Zeng Jiadong, et al. Experimental investigation of the spatial distribution of buffeting drag on bluff body with rectangular cross-section [J]. Engineering Mechanics, 2017, 34(01): 139-144.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}