此次研究对水平板附近低质量比(m* = 43.6)圆柱的涡激振动(vortex-induced vibration ,VIV)问题开展了风洞实验,其中圆柱与平板的间隙范围为0 ≤ S/D ≤ 2.5。结果表明,当S/D = 0时,随着约化速度U*的增加,圆柱始终保持静止。当0 < S/D < 0.6时,圆柱碰壁振动,其向上振幅略高于向下振幅,且尾流形式单一。当S/D ≥ 0.6时,圆柱振动不再碰壁。从S/D = 0.8开始,响应振幅明显出现三个分支,同时尾流形式变得更加丰富。当S/D达到2.5时,平板与圆柱之间的相互影响可近似忽略。平板表面的气压分布受到圆柱振幅以及间隙比的综合影响。当圆柱发生较大振动时,下方平板表面的脉动风压系数显著增加,且风压的脉动频率始终与圆柱的响应频率保持一致。
关键词:涡激振动;低质量比;间隙比;响应分支;风压系数
Abstract
The vortex-induced vibration (VIV) of a low mass circular cylinder near a flat plate was experimentally studied in wind tunnel. S/D, the gap-to-diameter ratio, was 0-2.5, and m*, the mass ratio of cylinder, was 43.6. The results show that, when S/D = 0, the cylinder remains stationary all the time, with increasing U*, and the vortex shedding is completely suppressed. when 0 < S/D < 0.6, the cylinder hits the wall periodically, and the upward amplitude is slightly larger than the downward one, and its wake form is single. when S/D ≥ 0.6, the cylinder vibration will not touch the wall. Different branches of the response amplitude appear for S/D ≥ 0.8, and the wake form of the cylinder becomes more abundant. When S/D reaches 2.5, the influence of the plate on the cylinder can be approximately ignored. The pressure distribution on the plate surface is affected by the cylinder amplitude and the gap. When the cylinder vibrates greatly, the fluctuating pressure on the surface of the plate increases significantly, and the fluctuating frequency is always consistent with the vibration frequency of the cylinder.
Key words: vortex-induced vibration; low mass ratio; gap ratio S/D; response branch; pressure coefficient.
关键词
涡激振动 /
低质量比 /
间隙比 /
响应分支 /
风压系数
{{custom_keyword}} /
Key words
vortex-induced vibration /
low mass ratio /
gap ratio S/D /
response branch /
pressure coefficient.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Feng C C. The measurement of vortex-induced effects in flow past a stationary and oscillating circular and D-section cylinder [D]. University of British Columbia, 1968.
[2] Williamson C H K, Roshko A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of Fluids & Structures, 1988, 2(4):355-381.
[3] Khalak A, Williamson C H K. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder[J]. Journal of Wind Engineering & Industrial Aerodynamics,1997,69.
[4] Govardhan R, Williamson C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420:85-130.
[5] 李子丰,宋广明,陈雁玲,等. 羽翼形隔水管涡激振动抑制装置实验研究[J].振动与冲击,2020,39(09):17-23.
LI Zifeng, SONG Guangming, CHEN Yanling, et al. Experimental study on the bird-wing shaped suppression device for the vortex-induced vibration of risers[J]. Journal of Vibration and Shock, 2020, 39(09):17-23.
[6] 徐万海,罗浩,孙海. 近自由表面海流能发电装置VIVACE流激振动的实验研究[J].振动与冲击,2019,38(04):83-89.
Xu Wanhai, Luo Hao, Sun Hai. An experimental study on flow-induced vibration of the VIVACE converter for harnessing ocean flow energy beneath a free surface[J]. Journal of Vibration and Shock, 2019, 38(04):83-89.
[7] He G S, Wang J J, Pan C, et al. Vortex dynamics for flow over a circular cylinder in proximity to a wall[J]. Journal of Fluid Mechanics, 2017.
[8] 张明超,王汉封,彭思. 近平板圆柱体气动力雷诺数效应[J].水动力学研究与进展(A辑),2018,33(05):666-673.
Zhang Mingchao, Wang Hanfeng, Peng Si. Reynolds number effects on the aerodynamic forces of a circular cylinder near a flat plate[J]. Journal of Hydrodynamics Research and Progress (Series A), 2018, 33(05):666-673.
[9] Wang X K, Hao Z, Tan S K. Vortex-induced vibrations of a neutrally buoyant circular cylinder near a plane wall[J]. Journal of Fluids & Structures, 2013, 39:188-204.
[10] Zhao M, Cheng L. Numerical simulation of two-degree-of-freedom vortex-induced vibration of a circular cylinder close to a plane boundary[J]. Journal of Fluids & Structures, 2011, 27(7):1097-1110.
[11] Yang B, Gao F, Jeng D S, et al. Experimental study of vortex-induced vibrations of a cylinder near a rigid plane boundary in steady flow[J]. Acta Mechanica Sinica, 2009, 25(001):51-63.
[12] Hsieh S C, Low Y M, Chiew Y M. Flow characteristics around a circular cylinder subjected to vortex-induced vibration near a plane boundary[J]. Journal of Fluids and Structures, 2016, 65:257-277.
[13] Daneshvar S, Morton C. Vortex-Induced Vibration of a Circular Cylinder with Low Mass Ratio Near a Plane Wall[C]// Asme Fluids Engineering Division Summer Meeting. 2017.
[14] Zang Z, Zhou T. Transverse vortex-induced vibrations of a near-wall cylinder under oblique flows[J]. Journal of Fluids & Structures, 2017, 68:370-389.
[15] 刘俊,高福平. 近壁面柱体涡激振动的迟滞效应[J].力学学报,2019,51(06):1630-1640.
LIU Jun, GAO Fuping. Hysteresis in vortex-induced vibrations of a near-wall cylinder [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(06):1630-1640.
[16] 吕振,刘芙群,张伟伟,等. 低质量比圆柱涡致振动风洞实验研究[J].空气动力学学报, 2018(6):1034-1040.
LYU Zhen, LIU Fuqun, ZHANG Weiwei, et al. Experiments on vortex-induced vibration of a circular cylinder in wind tunnel [J]. Acta Aerodynamica Sinica, 2018(6):1034-1040.
[17] Mannini C, Marra A M, Bartoli G. Experimental investigation on VIV-galloping interaction of a rectangular 3:2 cylinder[J]. Meccanica, 2015, 50(3):841-853.
[18] Bartoli G, Marra A M, Mannini C. VIV-galloping instability of rectangular cylinders: Review and new experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics: The Journal of the International Association for Wind Engineering, 2014.
[19] Ehrmann R S, Loftin K M, Johnson S, et al. Lock-in of elastically mounted airfoils at a 90° angle of attack[J]. Journal of Fluids & Structures, 2014, 44:205-215.
[20] Gao G Z, Zhu L D. Measurement and verification of unsteady galloping force on a rectangular 2:1 cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics: The Journal of the International Association for Wind Engineering, 2016.
[21] Morse T L, Williamson C H K. Prediction of vortex-induced vibration response by employing controlled motion[J]. Journal of Fluid Mechanics, 2009, 634:5-39.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}