BAT子弹药折叠翼展开冲击非光滑模型的隐式积分算法

张洪铭1,顾晓辉1,孙丽2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 1-8.

PDF(1534 KB)
PDF(1534 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 1-8.
论文

BAT子弹药折叠翼展开冲击非光滑模型的隐式积分算法

  • 张洪铭1,顾晓辉1,孙丽2
作者信息 +

Implicit integration algorithm for impact non-smooth model of BAT submunition folded wing unfolding

  • ZHANG Hongming1, GU Xiaohui1, SUN Li2
Author information +
文章历史 +

摘要

非光滑动力学模型能有效处理多体系统内的单边约束,是弹性接触/碰撞分析的主要研究方法,但其复杂的数学形式难以进行工程应用。为了降低非光滑模型的应用难度并提高模型计算精度,以BAT子弹药折叠翼的展开冲击过程为研究对象,建立了速度-冲量形式的完备非光滑动力学方程组,并基于互补接触定律,推导了方程组较为简洁的线型互补形式;提出了一种新型隐式积分算法,用于提高碰撞力的计算精度和效率。通过构造下一时刻的近似速度,由该近似速度和当前速度来加权构造下一时刻的位移,并更新下一时刻各状态量。工程算例中,对包含碰撞冲击的BAT子弹药折叠翼展开过程进行计算,将提出的隐式积分算法与已有算法进行对比分析,结果表明:相较于Moreau中点算法,隐式积分算法对碰撞力的计算精度更高,基于所提隐式积分算法的非光滑动力学模型能够严格遵从单边约束,计算的相对误差在10-8量级,能够为小载荷、高精度的多体碰撞系统提供更为准确的数值计算方法。
关键词:非光滑动力学;线性互补问题;多体动力学;折叠翼;碰撞冲击

Abstract

Non-smooth dynamic model can effectively deal with unilateral constraints in multibody systems and is the main research method of elastic contact / collision analysis, but its complex mathematical form is difficult to be applied in engineering. In order to reduce the difficulty of the application of the non-smooth model and improve the calculation accuracy of the model, taking the unfolding impact process of the BAT submunition as the research object, the complete non-smooth dynamic equations in the form of velocity-impulse are established, and the linear complementary form of the equations is derived based on the complementary contact law. A new implicit integration algorithm is proposed in this paper to improve the accuracy and efficiency of collision force calculation. By constructing the approximate velocity of the next time point, using the approximate velocity and the current velocity, the displacement of the next time point is constructed by weighted summation, and the state variables of the next time are updated. Through the calculation of the folding wing deployment process of BAT submunitions including collision impact, the proposed implicit integration algorithm is compared with the existing algorithm. The results show that the implicit integration algorithm proposed in this paper is more accurate in calculating the collision force than the Moreau midpoint algorithm. The non-smooth dynamic model based on the proposed implicit integration algorithm can strictly comply with unilateral constraints, and the relative error is of the order of 10-8 level, which can provide a more accurate numerical calculation method for multi-body collision systems with small loads and high precision.

关键词

非光滑动力学 / 线性互补问题 / 多体动力学 / 折叠翼 / 碰撞冲击

Key words

non-smooth dynamics / LCP / multibody dynamics / folding wings / impact

引用本文

导出引用
张洪铭1,顾晓辉1,孙丽2. BAT子弹药折叠翼展开冲击非光滑模型的隐式积分算法[J]. 振动与冲击, 2022, 41(17): 1-8
ZHANG Hongming1, GU Xiaohui1, SUN Li2. Implicit integration algorithm for impact non-smooth model of BAT submunition folded wing unfolding[J]. Journal of Vibration and Shock, 2022, 41(17): 1-8

参考文献

[1] 曾清香. 飞行器折叠翼设计及其运动动态性能分析与试验研究[D]. 上海:东华大学, 2016.
    Zeng Q X. Kinematics and Dynamics Analysis and Test Study for the Folded-Wing Design of Aircrafte[D]. Shanghai: Donghua University, 2016.
[2] 林三春, 付继伟, 阎君, 等. 无阻尼杆式栅格翼展开冲击影响因素研究[J]. 强度与环境, 2017, 44(05): 52-57.
    Lin S Ch, Fu J W, Yan J, et al. Study on influcence factors of unfolding impact of non-damping rod grid fins[J]. Structure & Environment Engineering, 2017, 44(05): 52-57.
[3] 唐霄汉, 李彬, 李刚, 等. 基于动态本构模型的整流罩铰链系统自冲击分析[J]. 计算力学学报, 2017, 34(04): 403-410.
    Tang X H, Li B, Li G, et al. Self-impact analysis of the fairing hinge system based on dynamic constitutive models[J]. Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2017, 34(4): 403-410.
[4] 甄文强, 姬永强, 石运国. 导弹折叠翼展开过程的动力学仿真及试验研究[J]. 兵工学报, 2016, 37(08): 1409-1414.
    Zhen W Q, Ji Y Q, Shi Y G . Dynamic Simulation and Experimental Study of Deployment Process of Missile Folding-wing[J]. Acta Armamentarii, 2016, 37(08): 1409-1414.
[5] 甄文强, 杨奇, 姬永强, 等. 发射环境下导弹折叠翼的展开试验及仿真分析[J]. 兵工学报, 2018, 39(09): 1756-1761. Zhen W Q, Yang Q, Ji Y Q, et al. Test and Simulation of Deployment Process of Missile Folding-wings during Launching[J]. Acta Armamentarii, 2018, 39(09): 1756-1761.
[6] 李莉, 任茶仙, 张铎. 折叠翼机构展开动力学仿真及优化[J]. 强度与环境, 2007(01): 17-21.
Li L, Ren Ch X, Zhang D. Dynamic simulation and optimization design of deployment of folding-wing[J]. Structure & Environment Engineering, 20072007(01): 17-21.
[7] 蔡德咏, 马大为, 朱忠领, 等. 折叠尾翼驱动扭簧参数优化及数值仿真[J]. 振动与冲击, 2011, 30(08): 128-132.
Cai D Y , Ma D W, Zhu Z L, et al. Parameter optimization
and numerical simulation of driving torsion spring for folding
empennage[J]. Journal of Vibration & Shock, 2011,
30(8):128-132.
[8] 赵俊锋, 刘莉, 杨武, 等. 折叠弹翼展开动力学仿真及优化[J]. 弹箭与制导学报, 2012, 32(02): 155-157.
Zhao J F, Li L, Yang W, et al. Dynamic Simulation and Optimization Design of Folding Wing Deployment[J].Journal of Projectiles,Rockets,Missiles and Guidance, 2012, 32(02): 155-157.
[9] 韩雪峰, 刘晓东, 马伍元, 等. 飞行器折叠翼机构展开性能的优化及实验[J]. 光学精密工程, 2016, 24(09): 2262-2270.
Han X F , XD Liu, Ma W Y, et al. Optimization and experiments of deployment performance for folding wing mechanism of an aircraft[J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2016, 24(9):2262-2270.
[10] 郭宏伟, 李长洲, 史文华, 等. 弹簧展开铰链锁定冲击及减小冲击方法[J]. 哈尔滨工业大学学报, 2016, 48(01): 29-34.
Guo H, Li C, Shi W H, et al. Approaches to calculate and reduce locking impact of deployable hinges[J]. Journal of Harbin Institute of Technology, 2016, 48(01): 29-34.
[11] Ma S, Wang T. Planar multiple­contact problems subject to unilateral and bilateral kinetic constraints with static coulomb friction[J]. Nonlinear Dynamics, 2018, 94(1): 99–121.
[12] 王庚祥, 刘宏昭. 多体系统动力学中关节效应模型的研究进展. 力学学报, 2015, 47(1): 31–50.
Wang G X, Liu H Zh. Research Progress ofJoint Effects Model in Multibody System Dynamics[J]. Chinese Journal ofTheoretical and Applied Mechanics, 2015, 47(1): 31–50.
[13] 王琪, 庄方方, 郭易圆, 等. 非光滑多体系统动力学数值算法的研究 进展. 力学进展, 2013, 43(1): 101–111.
Wang Q, Zhuang F F, Guo Y Y, et al. Advances in The Research On Numerical Methods For Non­smooth Dynamics Of Multibody Systems[J]. Advances In Mechanics, 2013, 43(1): 101–111.
[14] 曹登庆, 初世明, 李郑发, 等. 空间可展机构非光滑力学模型和动力 学研究. 力学学报, 2013, 45(1): 3–15.
Cao D Q, Chu Sh M, Li Zh F, et al. Study On The Non­smooth Mechanical Models And Dynamics For Space Deployable Mechanisms[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 3–15.
[15] Skrinjar L, Slavič J, Boltežar M. A review of continuous contact­force models in multibody dynamics[J]. International Journal of Mechanical Sciences, 2018, 145: 171–187.
[16] Carvalho AS, Martins JM. Exact restitution and generalizations for the hunt–crossley contact model[J]. Mechanism and Machine Theory, 2019, 139: 174–194.
[17] Zhang J, Li W, Zhao L, He G. A continuous contact force model for impact analysis in multibody dynamics[J]. Mechanism and Machine Theory, 2020, 153: 103946.
[18] 田强, 刘铖, 李培, 等. 多柔体系统动力学研究进展与挑战[J]. 动力学与控制学报, 2017, 15(5): 385–405.
Tian Q, Liu Ch, Li P, et al. Advances and challenges in dynamics of flexible multibody systems[J]. Journal of Dynamics and Control, 2017, 15(5): 385–405.
[19] Peng H, Song N, Kan Z. A novel nonsmooth dynamics method for multibody systems with friction and impact based on the symplectic discrete format[J]. International Journal for Numerical Methods in Engineering, 2020, 121(7): 1530-1557.
[20] 洪嘉振, 王检耀, 刘铸永. 变拓扑柔性多体系统动力学若干关键问题研究[C]// 中国力学大会-2015论文摘要集. 2015.
[21] 钱震杰, 章定国. 含摩擦碰撞柔性机械臂动力学研究[J]. 振动工程学报, 2015, 28(6): 879-886.
Qian Z J , Zhang D G . Frictional impact dynamics of flexible manipulator arms[J]. Journal of Vibration Engineering, 2015.
[22] 王琪, 庄方方, 郭易圆, 等. 非光滑多体系统动力学数值算法的研究进展[J]. 力学进展, 2013, 43(1): 101–111.
Wang Q, Zhuang F F, Guo Y Y, et al. Advances in The Research On Numerical Methods For Non­smooth Dynamics Of Multibody Systems[J]. Advances In Mechanics, 2013, 43(1): 101-111.
[23] Yamane K, Nakamura Y. A numerically robust LCP solver for simulating articulated rigid bodies in contact[J]. Proceedings of robotics: science and systems IV, Zurich, Switzerland, 2008, 19: 20.

PDF(1534 KB)

Accesses

Citation

Detail

段落导航
相关文章

/