超音速声强近似测量方法

王文璟1,张永斌2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 111-116.

PDF(1430 KB)
PDF(1430 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 111-116.
论文

超音速声强近似测量方法

  • 王文璟1,张永斌2
作者信息 +

Approximate measurement method of supersonic sound intensity

  • WANG Wenjing1, ZHANG Yongbin2
Author information +
文章历史 +

摘要

通过测量超音速声强可以准确识别引起远场噪声辐射的声源,对于从根源上控制结构噪声具有重要意义。快照法和扫描法是目前测量超音速声强的常用方法。快照法需要大通道数的测试设备,导致测试成本过高;扫描法需要预知潜在声源的数目和与潜在声源相关的参考信号,但在实际中声源数目和参考信号难以获取,因此其应用受限。为解决上述问题,本文提出一种超音速声强近似测量方法。该方法可以实现扫描测量,减小所需测试设备通道数目,而且不需要实际声源数目和参考信号等先验知识。数值仿真和实验结果表明,所提方法可以有效识别引起远场声辐射的声源区域。
关键词:超音速声强;参考信号;声源识别

Abstract

Measuring supersonic acoustic intensity can help identify noise sources directly related to the far field acoustic radiation, which is very important for the control of structural borne-noise. The snap shot method and scanning method are the conventional choice to measure the supersonic acoustic intensity. However, the snap shot method requires a huge amount of transducers and recording devices, and the scanning method requires to know the number of potential noise sources and reference signals related to these sources in advance, which are difficult to be obtained in practice. To avoid the problems associated with above-mentioned measurement methods, a method for measuring the approximate supersonic acoustic intensity is proposed, which does not require any prior information about potential sources and reference signals, and can be implemented by sequentially scanning with a small amount of transducers and recording devices. The numerical and experimental results show that the proposed method can identify the sources responsible for far field acoustic radiation effectively.
Key words: supersonic acoustic intensity; reference signals; sound source identification

关键词

超音速声强 / 参考信号 / 声源识别

Key words

supersonic acoustic intensity / reference signals / sound source identification

引用本文

导出引用
王文璟1,张永斌2. 超音速声强近似测量方法[J]. 振动与冲击, 2022, 41(17): 111-116
WANG Wenjing1, ZHANG Yongbin2. Approximate measurement method of supersonic sound intensity[J]. Journal of Vibration and Shock, 2022, 41(17): 111-116

参考文献

[1] Williams E G. Supersonic acoustic intensity[J]. Journal of the Acoustical Society of America, 1995, 97(1): 121-127.
[2] Williams E G. Supersonic acoustic intensity on planar sources [J]. Journal of the Acoustical Society of America, 1998, 104(5): 2845-2850.
[3] Williams E G. Fourier Acoustics: Sound Radiation and Nearfield Acoustic Holography[M]. Academic Press, San Diego, 1999.
[4] Williams E G. Supersonic acoustic intensity on planar sources [J]. Journal of the Acoustical Society of America, 1998, 104(5):
[5] Fernandez-Grande E, Jacobsen F, Leclère Q. Direct formulation of the supersonic acoustic intensity in space domain[J]. Journal of the Acoustical Society of America, 2012, 131(1): 186-193.
[6] 刘程鹏, 黎胜. 阻尼板复模态对超声速声强和声功率的影响[J]. 哈尔滨工程大学学报. 2019, 40(12): 1993-1999.
LIU Chengpeng, LI Sheng. Supersonic acoustic intensity and modal complexity of complex-mode acoustic radiation from damping plates[J]. Journal of Harbin Engineering University, 2019, 40(12): 1993-1999.
[7] Magalhães M B S, Tenenbaum R A. Supersonic acoustic intensity for arbitrarily shaped sources[J]. Acta Acustica united with Acustica, 2006, 92(2): 189-201.
[8] Valdivia N P, Williams E G, Herdic P C. Equivalent sources method for supersonic intensity of arbitrarily shaped geometries[J]. Journal of Sound and Vibration, 2015, 347: 46-62.
[9] Valdivia N P. Integral formulas for supersonic reconstruction of the acoustic field[J]. Inverse Problems in Science and Engineering, 2018, 26(3): 376-397.
[10] Valdivia N P. Improved integral formulae for supersonic reconstruction of the acoustic field[J]. Inverse Problems in Science and Engineering, 2018, 26(6): 898-924.
[11] Williams E G. Convolution formulations for non-negative intensity [J]. Journal of the Acoustical Society of America, 2013, 134(2): 1055-1066.
[12] Liu D, Peters H, Marburg S, Kessissoglou N. Supersonic intensity and non-negative intensity for prediction of radiated sound[J]. Journal of the Acoustical Society of America, 2016, 139(5): 2797-2806.
 [13] 陈心昭, 毕传兴等. 近场声全息技术及其应用[M]. 科学出版社, 北京, 2013.
CHEN Xinzhao, BI Chuanxing, et al. Near-field acoustic holography technique and its application[M]. Science Press, Beijing, 2013.
[14] 蒋伟康, 万泉. 近场声全息理论与应用的研究现状与展望[J]. 机械强度, 2005, 27(3): 288-295.
JIANG Weikang, WAN Quan. Review and outlook of researches on nearfield acoustical holography theories with application, Journal of Mechanical Strength, 2005, 27(3): 288-295.
[15] 张德俊. 近场声全息对振动体及其辐射场的成像[J]. 物理学进展, 1996, 16(3/4): 614-623.
ZHANG Dejun. Imaging for vibration mode and radiation field of vibrating object using NAH[J].Progress in Physics, 1996, 16(3 /4): 614-623.
[16] 向宇, 石梓玉, 陆静, 吴文军. 基于波叠加法的非共形近场声全息波函数的构造与选择[J]. 振动与冲击, 2020, 39(15): 183-192.
XIANG Yu, SHI Ziyu, LU Jing, WU Wenjun. Construction and selection of nonconformal near-field acoustic holography wave function based on wave superposition method[J]. Journal of Vibration and Shock, 2020, 39(15): 183-192.
[17] 扈宇, 胡定玉, 方宇, 肖悦. 基于稀疏贝叶斯学习的高分辨率Patch 近场声全息[J]. 振动与冲击, 2018, 37(16): 104-110, 153.
HU Yu, HU Dingyu, FANG Yu, XIAO Yue. Super resolution patch near-field acoustic holography via sparse Bayesian learning[J]. Journal of Vibration and Shock, 2018, 37(16): 104-110, 153.
[18] Ma L, Cheng L. Sound radiation and transonic boundaries of a plate with an acoustic black hole[J]. Journal of the Acoustical Society of America, 2019, 145(1): 164-172.
[19] Deng J, Guasch O, Maxit, Zheng L. Annular acoustic black holes to reduce sound radiation from cylindrical shells[J]. Mechanical Systems and Signal Processing, 2021, 158: 107722.
[20] Nam K-U, Kim Y-H. A partial field decomposition algorithm and its examples for nearfield acoustical holography[J]. Journal of the Acoustical Society of America, 2004, 116(1): 172-185.
[21] Kim Y, Bolton J S, Kwon H S. Partial sound field decomposition in multireference near-field acoustical holography by using optimally located virtual references[J]. Journal of the Acoustical Society of America, 2004, 115(4): 1641-1652.
[22] 蒋孝煜, 连小珉. 声强技术及其在汽车工程中的应用[M].清华大学出版社, 北京, 2001.
JIANG Xiaoyu, LIAN Xiaomin. Sound intensity technique and its application in automotive engineering[M]. Tsinghua University Press, 2001.
[23] Fahy F J. Sound Intensity[M]. London and New York, Elsevier Applied Science, 1989.
[24] Maidanik G. Vibrational and radiative classifications of modes of a baffled finite panel[J]. Journal of Sound and Vibration, 1974, 34(4): 447-455.

PDF(1430 KB)

Accesses

Citation

Detail

段落导航
相关文章

/