流体冲击致结构破坏在自然灾害、海岸及近海工程中广泛存在,是典型的流固耦合问题。基于网格的方法在捕捉流体自由表面、模拟结构开裂破坏的过程中存在固有的困难。针对此类问题,发展了一种基于光滑粒子流体动力学(Smoothed Particle Hydrodynamics, SPH)和近场动力学(Peridynamics, PD) 耦合求解冲击破坏问题的数值方法。采用动态边界条件的思想,利用SPH和PD在数值计算过程上的相似性,通过设置恰当的光滑长度,自动识别流固界面并进行数据交换,高效实现了耦合计算过程。该方法一定程度上规避了无网格法在施加本质边界条件上的困难,综合了SPH在处理自由表面流、PD在处理材料断裂失效上的优势,可以实现一定规模复杂流固耦合问题的模拟。最后,采用提出的SPH-PD耦合方法,模拟了溃坝冲击下游弹性挡板问题,成功捕捉到结构经历大变形直至断裂失效的行为。
关键词:流固耦合;SPH;PD;动态边界条件;无网格法;结构破坏
Abstract
Structural damage caused by fluid impact is widespread in natural disasters, coastal and offshore engineering. Grid-based method has inherent difficulties in simulating fluid with free surface and structure with crack. In order to solve these kinds of problems, a comprehensive numerical model based on Smoothed Particle Hydrodynamics (SPH) and Peridynamics (PD) is proposed. The kernel of the proposed model focuses on applying the idea of dynamic boundary conditions. Considering the similarity of SPH and PD in numerical process, an appropriate smooth length was determined to identify the fluid-structure interface automatically. Correspondingly, the fluid-structure interaction was implemented by exchanging the data on the fluid-structure interface. This method avoids the difficulty of applying essential boundary conditions in meshless method. The SPH-PD method combines the advantages of SPH in dealing with free surface flow and PD in analyzing material fracture process and can simulate complex FSI problems. At the end of this paper, a 2D FSI problem is simulated with the proposed SPH-PD method, and the failure of the solid region after large deformation is successfully captured.
Key words: fluid-structure interaction; smoothed particle hydrodynamics, SPH; peridynamics, PD; dynamic boundary condition; mesh free method; structure failure
关键词
流固耦合 /
SPH /
PD /
动态边界条件 /
无网格法 /
结构破坏
{{custom_keyword}} /
Key words
fluid-structure interaction /
smoothed particle hydrodynamics, SPH /
peridynamics, PD /
dynamic boundary condition /
mesh free method /
structure failure
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]. Basting S, Quaini A, Glowinski R, et al. Extended ALE Method for fluid-structure interaction problems with large structural displacements [J]. Journal of Computational Physics, 2017. 331: 312-336.
[2]. Shin Y S, Chisum J E. Modeling and simulation of underwater shock problems using a coupled Lagrangian-Eulerian analysis approach [J]. Shock and Vibration, 1997. 4(1): 1-10.
[3]. Peskin C S. The immersed boundary method [J]. Acta Numerica, 2002. 11: 479-517.
[4]. Wick T. Coupling fluid-structure interaction with phase-field fracture [J]. Journal of Computational Physics, 2016. 327: 67-96.
[5]. Zheng Chang-Jun, BI Chuan-xing, Zhang Chuan-zeng, et al. Free vibration analysis of elastic structures submerged in an infinite or semi-infinite fluid domain by means of a coupled FE-BE solver [J]. Journal of Computational Physics, 2018. 359: 183-198.
[6]. Monaghan J J. Smoothed Particle Hydrodynamics and Its Diverse Applications [J]. Annual review of fluid mechanics, 2012. 44(1): 323-346.
[7]. Gray J P, Monaghan J J, Swift R P. SPH elastic dynamics [J]. Computer methods in applied mechanics and engineering, 2001. 190(49): 6641-6662.
[8]. 沈雁鸣,何 琨,陈坚强等. SPH统一算法对自由流体冲击弹性结构体问题模拟 [J]. 振动与冲击, 2015. 34(16): 60-65.
Shen Yan-ming, He Kun, Chen Jian-qiang, et al. Numerical simulation of free surface flow impacting elastic structure with SPH uniform method [J]. Journal of vibration and shock, 2015. 34(16): 60-65.
[9]. 施书文,张桂勇,王双强等. 基于WCSPH-SPIM流固耦合模型的弹性体入水模拟[J]. 振动与冲击, 2020. 39(18): 103-108.
Shi Shu-wen, Zhang Gui-yong, Wang Shuang-qiang, et al. Numerical simulation of the water entry of an elastomer by using the WCSPH- SPIM coupled method [J]. Journal of vibration and shock, 2020. 39(18): 103-108.
[10]. Silling S A, Askari E. A meshfree method based on the peridynamic model of solid mechanics [J]. Computers & Structures, 2005. 83(17-18): 1526-1535.
[11]. 顾鑫,章青,黄丹. 基于近场动力学方法的混凝土板侵彻问题研究 [J]. 振动与冲击, 2016. 35(06): 52-58.
Gu Xin, Zhang Qing, Huang Dan. Peridynamics used in solving penetration problem of concrete slabs [J]. Journal of vibration and shock, 2016. 35(06): 52-58.
[12]. Oterkus S, Madenci E, Oterkus E. Fully coupled poroelastic peridynamic formulation for fluid-filled fractures [J]. Engineering geology, 2017. 225: 19-28.
[13]. Lai Xin, Liu Li-sheng, Li Shao-fan, et al. A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials [J]. International Journal of Impact Engineering, 2018. 111: 130-146.
[14]. Gao Y, Oterkus S. Fluid-elastic structure interaction simulation by using ordinary state-based peridynamics and peridynamic differential operator [J]. Engineering Analysis with Boundary Elements, 2020. 121: 126-142.
[15]. Ganzenmüller G C , Hiermaier S, May M, On the similarity of meshless discretizations of Peridynamics and Smooth-Particle Hydrodynamics [J]. Computers & Structures,2015.150: 71-78.
[16]. Monaghan J J. Simulating free surface flows with SPH [J]. Journal of computational physics, 1994. 110(2): 399-406.
[17]. Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree [J]. Advances in computational Mathematics, 1995. 4(1): 389-396.
[18]. Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid-structure interaction by SPH [J]. Computers & Structures, 2007. 85(11-14): 879-890.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}