径向节流型磁流变胶泥缓冲器冲击动力学行为

付本元1,张贤明2,刘驰1,李祝强2,廖昌荣3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 177-184.

PDF(2130 KB)
PDF(2130 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 177-184.
论文

径向节流型磁流变胶泥缓冲器冲击动力学行为

  • 付本元1,张贤明2,刘驰1,李祝强2,廖昌荣3
作者信息 +

Impact dynamic behavior of radial throttling MR mastic buffer

  • FU Benyuan1, ZHANG Xianming2, LIU Chi1, LI Zhuqiang2, LIAO Changrong3
Author information +
文章历史 +

摘要

为提高汽车碰撞缓冲系统的自适应调节能力,本文提出一种波纹圧溃与径向流动节流共同作用的可控缓冲器。用波纹管取代传统吸能盒,并串接于磁流变阀,内部填充具备优秀悬浮稳定性的磁流变胶泥;为提高磁场利用率且减小缓冲器轴向长度,在磁流变阀内建立胶泥流动方向与磁场方向完全垂直的径向流道。基于Herschel-Bulkley (HB)本构模型推导了流道内流动节流压降与冲击速度间的关系;考虑局部损耗的影响,构建了HB-Minor Losses (HBM)动力学模型;进一步定量分析了惯性效应产生的压降,构建了包含惯性效应的HBM-Inertia (HBMI)模型。制作了缓冲器并开展了落锤冲击试验;分析了径向流道压降在阻尼流道总压降中的比重;分析了局部损耗对压降的影响,提出了进一步提高可控性的局部损耗优化区域。对比理论与试验缓冲力曲线,分四个阶段分析了惯性效应对缓冲力的具体影响,发现惯性效应主要在峰值阶段、结束阶段影响缓冲力;比较了理论模型与试验峰值力、动态范围,进一步得到理论动态范围相对误差,结果表明:HBMI模型对磁流变胶泥缓冲器动力学行为的预测更为准确。
关键词:磁流变胶泥缓冲器;径向节流;动力学行为;局部损耗;惯性效应

Abstract

To improve the adaptive adjustment ability of automobile buffer system, a controllable buffer with the combination of corrugation crush and radial flow throttling is proposed in this paper. The corrugated tube is used to replace the traditional crash box and connected in series with the magnetorheological (MR) valve, which is filled with MR cement with excellent suspension stability. For improving the utilization rate of magnetic field and reducing the axial length of buffer, a radial channel is established in MR valve. In the radial channel, the flow direction of cement is completely perpendicular to the direction of magnetic field. Based on the Herschel Bulkley (HB) constitutive model, the relationship between flow throttling pressure drop and impact velocity is deduced. Considering the influence of minor losses, HB-minor losses (HBM) dynamic model is constructed. Further, the pressure drop caused by inertia effect is quantitatively analyzed. At last, the HBM-inertia (HBMI) model is constructed. The buffer is made and the impact tests are carried out. The proportion of radial pressure drop in the total pressure drop of damping channels is analyzed. The influence of minor losses on pressure drop is analyzed. To further improve the controllability, the minor losses optimization regions are put forward. Comparing the theoretical and experimental buffer force curves, the influence of inertia effect on buffer force is analyzed in four stages. It is found that inertia effect mainly affects buffer force in peak stage and end stage. The theoretical models are compared with the experimental peak force and dynamic range. Then the relative error of the dynamic range of the theoretical models are further obtained. The results show that the HBMI model is more accurate in predicting the dynamic behavior of MR cement buffer.
Key words: magnetorheological cement buffer; radial throttling; dynamic behavior; minor losses; inertia effect

关键词

磁流变胶泥缓冲器 / 径向节流 / 动力学行为 / 局部损耗 / 惯性效应

Key words

magnetorheological cement buffer / radial throttling / dynamic behavior / minor losses / inertia effect

引用本文

导出引用
付本元1,张贤明2,刘驰1,李祝强2,廖昌荣3. 径向节流型磁流变胶泥缓冲器冲击动力学行为[J]. 振动与冲击, 2022, 41(17): 177-184
FU Benyuan1, ZHANG Xianming2, LIU Chi1, LI Zhuqiang2, LIAO Changrong3. Impact dynamic behavior of radial throttling MR mastic buffer[J]. Journal of Vibration and Shock, 2022, 41(17): 177-184

参考文献

[1] 王祥, 金正烽. 我国道路交通事故发展趋势研究[J]. 交通科技与经济, 2019, 21(3):29-32, 37.
WANG Xiang, JIN Zheng-feng. Research on the tendency of road traffic accidents in China [J]. Technology & Economy in Areas of Communications, 2019, 21(3):29-32, 37.
[2] 万鑫铭, 徐小飞, 徐中明,等. 汽车用铝合金吸能盒结构优化设计[J]. 汽车工程学报, 2013, 3(1):15-21.
WAN Xin-ming, XU Xiao-fei, XU Zhong-ming, et al. Structure optimization design of aluminum alloy energy-absorbing box for automotives [J]. Chinese Journal of Automotive Engineering, 2013, 3(1):15-21.
[3] Hussain N N, Regalla S P, Rao Y. Low velocity Impact Characterization of Glass Fiber Reinforced Plastics for Application of Crash Box[J]. Materials Today: Proceedings, 2017, 4(2):3252-3262.
[4] 兰凤崇, 马聪承, 陈吉清,等. 泡沫铝填充分体式翻转结构设计与优化分析[J]. 机械工程学报, 2017, 53(12):156-165.
LAN Feng-chong, MA Cong-cheng, CHEN Ji-qing, et al. Structural design optimization of split typed flip tubes filled with aluminum foam [J]. Journal of Mechanical Engineering, 2017, 53(12):156-165.
[5] 徐涛, 刘念, 高伟钊,等. 轧制渐变厚度的汽车吸能盒结构参数优化[J]. 振动与冲击, 2018, 37(10):269-274.
XU Tao, LIU Nian, GAO Weizhao, et al. Parameters optimization of a vehicle crash box based on the tailor rolled blank technology [J]. Journal of Vibration and Shock, 2018, 37(10):269-274.
[6] 陈有松, 孙万朋, 安超群,等. 基于低速正碰的吸能盒式防撞梁吸能特性研究[J]. 现代制造工程, 2018, (10):53-58.
CHEN You-song, SUN Wan-peng, AN Chao-qun, et al. Research on energy-absorption characteristics of anti-collision beam with energy absorbing box based on low-speed frontal collision [J]. Modern Manufacturing Engineering, 2018, (10):53-58.
[7] Y Chen, Z Bai, L Zhang, et al. Crashworthiness analysis of octagonal multi-cell tube with functionally graded thickness under multiple loading angles [J]. Thin-Walled Structures, 2017, 110: 133-139.
[8] 徐鸣涛, 王丽娟, 陈宗渝,等. 基于管件液压成形工艺的汽车吸能盒改进设计及成形分析 [J]. 机械强度, 2017, 39(4):864-869.
XU Ming-tao, WANG Li-juan, CHEN Zong-yu, et al. Automobile Crash Box Improvement and Forming Analysis for Tube Hydroforming [J]. Journal of Mechanical Strength, 2017, 39(4):864-869.
[9] 张莉洁, 王炅, 钱林方. 冲击载荷下磁流变阻尼器动态特性分析及模型参数辨识[J]. 机械工程学报, 2009, 45 (1): 211-217.
Zhang Li-jie, Wang Jiong, Qian Lin-fang. Dynamic performance analysis and model parameter identifications of MR damers under impact load [J]. Journal of Mechanical Engineering, 2009, 45 (1): 211-217.
[10] 寿梦杰, 廖昌荣, 叶宇浩,等. 冲击载荷下磁流变缓冲器的动力学行为[J]. 机械工程学报, 2019, 55(1):72-80.
SHOU Meng-jie, LIAO Chang-rong, YE Yu-hao, et al. Dynamic behavior of magnetorheological energy absorber under impact loading [J]. Journal of Mechanical Engineering, 2019, 55(1):72-80.
[11] Yoon J Y, Kang B H, Kim J H, et al. New control logic based on mechanical energy conservation for aircraft landing gear system with magnetorheological dampers [J]. Smart Materials and Structures, 2020, 29(8):084003.
[12] 白先旭, 杨森. 磁流变半主动落锤冲击缓冲系统的“软着陆”控制试验与分析[J]. 机械工程学报, 2021, 57(1):121-127.
BAI Xian-xu, YANG Sen. Experimental test and analysis of “soft-landing” control for drop-induced shock systems using magnetorheological energy absorber [J]. Journal of Mechanical Engineering, 2021, 57(1):121-127.
[13] 陈凯峰, 郑祥盘. 曳引电梯新型磁流变制动装置设计与性能实验[J]. 振动与冲击, 2020, 39(23):165-175.
CHEN Kai-feng, ZHENG Xiang-pan. Design and performance tests of a new MR braking device for traction elevator [J]. Journal of Vibration and Shock, 2020, 39(23):165-175.
[14] 杨祖龙, 苏有文. 基于磁流变阻尼器与弹性基础隔震耦合建筑的地震响应分析[J]. 地震工程学报, 2018, 40(5):932-940.
YANG Zu-long, Su You-wen. Seismic response of a coupled building with magnetorheological damper and elastic base isolation [J]. China Earthquake Engineering Journal, 2018, 40(5):932-940.
[15] A L Browne, J D Mccleary, C S Namuduri, et al. Impact performance of magnetorheological fluids [J]. Journal of Intelligent Material Systems and Structures, 2009, 20 (6): 723-728.
[16] D Woo, S B Choi, Y T Choi, et al. Frontal crash mitigation using MR impact damper for controllable bumper [J]. Journal of Intelligent Material Systems and Structures, 2007, 18 (12): 1211-1215.
[17] 董小闵, 丁飞耀, 管治等. 面向高速的磁流变缓冲器多目标优化设计及性能研究[J]. 机械工程学报, 2014, 50 (5): 127-134.
DONG Xiao-min, DING Fei-yao, GUAN Zhi, et al. Multi-objective optimization and performance research of magneto-rheological absorber under high speed [J]. Journal of Mechanical Engineering, 2014, 50 (5): 127-134.
[18] L Xie, Y T Choi, C R Liao, et al. Long term stability of magnetorheological fluids using high viscosity linear polysiloxane carrier fluids [J]. Smart Materials & Structures, 2016, 25(7): 075006.
[19] Fu B, Liao C, Li Z, et al. Impact behavior of a high viscosity magnetorheological fluid-based energy absorber with a radial flow mode[J]. Smart Material Structures, 2017, 26(2):025025.
[20] Fu B Y, Liao C R, Xie L, et al. A theoretical analysis on crush characteristics of corrugated tube under axial impact and experimental verification [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2020, 42: 510.

PDF(2130 KB)

Accesses

Citation

Detail

段落导航
相关文章

/