空竹型负泊松比蜂窝结构的面内冲击性能研究

刘海涛1,2,刘佳岳1,2,张德权1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 262-267.

PDF(2097 KB)
PDF(2097 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 262-267.
论文

空竹型负泊松比蜂窝结构的面内冲击性能研究

  • 刘海涛1,2,刘佳岳1,2,张德权1,2
作者信息 +

In-plane impact performance of diabolo honeycomb structure with negative Poisson’s ratio

  • LIU Haitao1,2, LIU Jiayue1,2, ZHANG Dequan1,2
Author information +
文章历史 +

摘要

由于负泊松比蜂窝结构具备高比刚度、优良吸能特性等优点,近年来受到众多学者的关注。基于内凹六边形负泊松比结构,本文提出一种空竹型负泊松比蜂窝结构。运用一维冲击理论推导出结构的冲击临界速度。通过有限元ABAQUS/EXPLICIT对结构进行面内冲击响应特性分析,结果表明:与传统的内凹六边形结构相比,空竹型蜂窝结构具有更高的平台应力和比吸能,提高了结构的耐撞性和能量吸收能力;给出了不同冲击速度和结构参数对空竹型蜂窝平台应力与比吸能的影响规律。研究结果可为负泊松比蜂窝结构在实际工程中应用提供设计指导。
关键词:空竹型蜂窝结构;负泊松比;面内冲击;平台应力;能量吸收

Abstract

Due to the mechanical properties of the negative Poisson’s ratio honeycomb, such as the high stiffness ratio and excellent energy absorption characteristics, many researchers have attracted great interest. Based on the re-entrant hexagon negative Poisson's ratio structure, a diabolo shaped honeycomb (DSH) with negative Poisson’s ratio is proposed. The critical impact velocity of the structure is deduced by one-dimensional impact theory. The in-plane impact response characteristics of the DSH are analyzed by finite element ABAQUS/ Explicit. The results show that the DSH has higher platform stress and specific energy absorption value compared with the traditional re-entrant hexagon honeycomb, which improves the crashworthiness and energy absorption capacity of the honeycomb. The effects of different impact velocity and structural parameters on the platform stress and specific energy absorption of the DSH are given. The research results can provide design guidance for the application of the negative Poisson honeycomb structure in practical engineering.
Key words: DSH; negative Poisson's ratio; in-plane impact; plateau stress; energy absorption

关键词

空竹型蜂窝结构 / 负泊松比 / 面内冲击 / 平台应力 / 能量吸收

Key words

DSH / negative Poisson's ratio / in-plane impact / plateau stress / energy absorption

引用本文

导出引用
刘海涛1,2,刘佳岳1,2,张德权1,2. 空竹型负泊松比蜂窝结构的面内冲击性能研究[J]. 振动与冲击, 2022, 41(17): 262-267
LIU Haitao1,2, LIU Jiayue1,2, ZHANG Dequan1,2. In-plane impact performance of diabolo honeycomb structure with negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2022, 41(17): 262-267

参考文献

[1] 袁庆文, 杨翊仁. 超音速负泊松比蜂窝夹层板颤振分析[J]. 四川轻化工大学学报(自然科学版), 2020, 33(06): 71-77.
YUAN Qingwen, YANG Yiren. Flutter analysis of honeycomb sandwich plate with negative Poisson’s ratio in supersonic flow [J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2020, 33(06): 71-77.
[2] WU T, LI M, ZHU X, et al. Research on non-pneumatic tire with gradient anti-tetrachiral structures[J]. Mechanics of Advanced Materials and Structures, 2020(6):1-9.
[3] 夏利福, 杨德庆. 含负泊松比超材料构件的潜艇振动与声辐射性能分析[J]. 振动工程学报, 2019, 32(06): 956-965.
XIA Lifu, YANG Deqing. Vibration and underwater sounde radiation performance analysis of submarine with auxetic metamaterial ribs[J]. Journal of Vibration Engineering, 2019, 32(06): 956-965.
[4] 任毅如, 蒋宏勇, 金其多, 等. 仿生负泊松比拉胀内凹蜂窝结构耐撞性[J]. 航空学报, 2021, 42(3): 223978.
REN Yiru, JIANG Hongyong, JIN Qiduo, et al. Crashworthiness of bio-inspired auxetic reentrant honeycomb with negative Poisson's ratio[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (3): 223978.
[5] 沈振峰,张新春,白江畔,等.负泊松比内凹环形蜂窝结构的冲击响应特性研究[J]. 振动与冲击,2020, 33(18): 89-95.
SHEN Zhenfeng, ZHANG Xinchun, BAI Jiangpan, et al. Dynamic response characteristics of re-entrant circular honeycombs with negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2020, 33(18): 89-95.
[6] WANG Y, LIU N L, WANG T L, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure[J]. Materials & Design, 2016, 100(2016): 84-91.
[7] 李俊杰,陶猛,叶韩峰.负泊松比蜂窝空腔覆盖层水下爆炸抗冲性能研究[J]. 振动与冲击, 2019, 38(21): 126-132.
LI Junjie, TAO Meng, YE Hanfeng. Anti-shock performance of honeycomb claddings with negative Poisson’s ratio subjected to UNDEX [J]. Journal of Vibration and Shock, 2019, 38(21): 126-132.
[8] Hu L L, ZHOU M Z, DENG H. Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation[J]. Thin Walled Structures, 2018, 131: 373-384.
[9] 马芳武, 梁鸿宇, 王强, 等. 双材料负泊松比结构的面内冲击动力学性能[J]. 吉林大学学报(工学版), 2021, 51(01): 114-121.
MA Fangwu, LIANG Hongyu, WANG Qiang, et al. In-plane dynamic crushing of dual-material structure with negative Poisson’s ratio [J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(01): 114-121.
[10] 刘海涛, 王彦斌, 张争艳. 可调泊松比圆弧星型结构的参数化设计[J/OL]. 中国机械工程, 1-9[2021-05-26].http://kns.cnki.net/kcms/detail/42.1294.th.20210430.1144.008.html.
LIU Haitao, WANG Yanbin, ZHANG Zhengyan, Parametrization design of arc-star-shaped structures with tunable Poisson’s ratio[J/OL]. China Mechanical Engineering, 1-9[2021-05-26].
[11] 侯秀慧, 尹冠生. 负泊松比蜂窝抗冲击性能分析[J]. 机械强度, 2016, 38(05): 905-910.
HOU Xiuhui, YIN Guansheng. Dynamic crushing performance analysis for auxetic honeycomb structure[J]. Journal of Mechanical Strength, 2016, 38(05): 905-910.
[12] 魏路路, 余强, 赵轩, 等. 内凹-反手性蜂窝结构的面内动态压溃性能研究[J]. 振动与冲击, 2021, 40(04): 261-269.
WEI Lulu, YU Qiang, ZHAO Xuan, et al. In-plane dynamic crushing characteristics of re-entrant anti-trichiral honeycomb [J]. Journal of Vibration and Shock, 2021, 40(04): 261-269.
[13] 韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性[J]. 爆炸与冲击, 2019, 39(1): 47-57.
HAN Huilong, ZHANG Xinchun, WANG Peng. Dynamic responses and energy absorption properties of honeycombs with negative Poisson’s ratio[J]. Explosion and Shock Waves, 2019, 39(1): 47-57.
[14] XIAO D B, KANG X, LI Y, et al. Insight into the negative Poisson's ratio effect of metallic auxetic reentrant honeycomb under dynamic compression[J]. Materials Science and Engineering A, 2019, 763: 138181.
[15] DONG Z C, LI Y, ZHAO T, et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb[J]. Materials & design, 2019, 182: 108036.
[16] ZHANG X C, AN L Q, DING H M, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson’s ratio[J]. Journal of Sandwich Structures and Materials, 2015, 17(1): 26-55.
[17] QIU X M, ZHANG J, YU T X. Collapse of periodic planar lattices under uniaxial compression, Part Ⅱ: Dynamic crushing based on finite element simulation[J]. International Journal of Impact Engineering, 2009, 36(10): 1234-1241.

PDF(2097 KB)

Accesses

Citation

Detail

段落导航
相关文章

/