一种振荡浮子式波能发电装置的负载匹配模型的创建

何广华1,2,汪鹏1,刘朝纲1,栾政晓1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 55-62.

PDF(1726 KB)
PDF(1726 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 55-62.
论文

一种振荡浮子式波能发电装置的负载匹配模型的创建

  • 何广华1,2,汪鹏1,刘朝纲1,栾政晓1
作者信息 +

Establishment of load matching model of an oscillating float type wave energy power generation device

  • HE Guanghua1,2, WANG Peng1, LIU Chaogang1, LUAN Zhengxiao1
Author information +
文章历史 +

摘要

PTO参数的确定在波浪能发电装置设计方面具有十分重要的作用。本文基于浮子自由垂荡动力学模型,结合发电机的数学模型和传动比的影响,提出了一种以发电机为负载的浮子垂荡运动Simulink模型。对该Simulink模型的传递函数进行简化,从而得到负载的等效质量和负载阻尼,并使用AQWA计算此负载下的浮子垂荡运动响应。简化后的传递函数输出响应与Simulink模型相比,相对误差不超过1%。Simulink模型与AQWA的浮子垂荡运动振幅和平均发电功率幅值的计算结果的相对误差不超过4%。Simulink模型可以有效地用于传动比的确定和发电机的选型。
关键词:波浪能发电装置;负载匹配;发电机;传动比

Abstract

PTO parameters determination plays a fundamental role in the wave energy converter design. Based on the buoy free heave dynamic model, combined with the generator mathematical model and transmission ratio, the Simulink model was proposed, which was the buoy heave motion under generator. The transfer function of the Simulink model was simplified to obtain the equivalent mass and load damping, and using AQWA to calculate the heave response of buoy under these loads. Compared with the Simulink model, the output response relative error of the simplified transfer function is less than 1%. The relative errors are less than 4%, which is the buoy heave motion amplitude and average generation power between the Simulink model and AQWA. The Simulink model can be effectively used to determine transmission ratio and generator selection.
Key words: wave energy converter; load matching; generator; transmission ratio

关键词

波浪能发电装置 / 负载匹配 / 发电机 / 传动比

Key words

wave energy converter / load matching / generator / transmission ratio

引用本文

导出引用
何广华1,2,汪鹏1,刘朝纲1,栾政晓1. 一种振荡浮子式波能发电装置的负载匹配模型的创建[J]. 振动与冲击, 2022, 41(17): 55-62
HE Guanghua1,2, WANG Peng1, LIU Chaogang1, LUAN Zhengxiao1. Establishment of load matching model of an oscillating float type wave energy power generation device[J]. Journal of Vibration and Shock, 2022, 41(17): 55-62

参考文献

[1] Al-Habaibeh A, Su D, McCague J, et al. An innovative approach for energy generation from waves[J]. Energy Conversion and Management, 2010, 51(8): 1664-168.
[2] Anderlini E, Forehand D I M, Bannon E,et al. Reactive control of a two-body point absorber using reinforcement learning[J]. Ocean Engineering, 2018, 148: 650-658.
[3] Negahdari M, Dalayeli H, Moghadas M H. Design of a two-body wave energy converter by incorporating the effect of hydraulic power take-off parameters[J]. Journal of Marine Science and Technology, 2018, 26(4): 496-507.
[4] Yeung R W. Added mass and damping of a vertical cylinder in finite-depth waters[J]. Applied Ocean Research, 1981, 3(3): 119-133.
[5] Bachynski E E, Young Y L, Yeung R W. Analysis and optimization of a tethered wave energy converter in irregular waves[J]. Renewable Energy, 2012, 48: 133-145.
[6] Drobyshevski Y. Hydrodynamic coefficients of a floating, truncated vertical cylinder in shallow water[J]. Ocean Engineering, 2004, 31(3-4): 269-304.
[7] Bhatta D D, Rahman M. On scattering and radiation problem for a cylinder in water of finite depth[J]. International Journal of Engineering Science, 2003, 41(9): 931-967.
[8] 张万超, 周亚辉, 周效国. 振荡浮子式波能转换装置动力输出系统特性研究[J]. 振动与冲击, 2020, 39(11): 38-44.
ZHANG Wangchao, ZHOU Yahui, ZHOU Xiaoguo. Power take-off mechanism analysis of oscillating-buoy wave energy converter[J]. Journal of Vibration and Shock, 2020, 39(11): 38-44.
[9] Castro F A, Chiang L E. Design optimization and experimental validation of a two-body WaveEnergy Converter with adjustable Power Take-Off parameters[J]. Energy for Sustainable Development, 2020, 56: 19-32.
[10] Liang C W, Zuo L. On the dynamics and design of a two-body wave energy converter[J]. Renewable Energy, 2017, 101: 265-274.
[11] 李增亮, 范梦浩, 王萌, 等.浮子式波浪能转换装置功率匹配试验研究[J]. 石油机械, 2019, 47(05): 85-90.
LI Zengliang, FAN Menghao, WANG Meng, et al. Experimental Study on Power Matching of an Oscillating-buoy Wave Energy Converter. [J]. China Petroleum Machinery, 2019, 47(05): 85-90.
[12] 叶寅, 盛松伟, 乐婉贞, 等. 基于MATLAB and Simulink的波浪能装置液压能量转换系统仿真研究[J]. 海洋技术学报, 2021, 40(01): 87-95.
YE Yin, SHENG Songwei, YUE Wanzhen, et al. Simulation Study on Hydraulic Energy Conversion System of Wave Energy Device Based on MATLAB and Simulink[J]. Journal of Ocean Technology, 2021, 40(01): 87-95.
[13] 梁钰, 王为民, 刘红岩, 等. 波浪能发电系统的建模与仿真[J]. 电工技术, 2020(06): 37-38+46.
LIANG Yu, WANG Weimin, LIU Hongyan, et al. Modeling and Simulation of Wave Energy Power Generation System[J]. Electric Engineering, 2020(06): 37-38+46.
[14] 张兰勇, 张雷, 王五桂. 船舶三轴转台建模与非线性分析[J]. 新型工业化, 2017, 7(11): 89-95.
ZHANG Lanyong, ZHANG Lei, WANG Wugui. 2017. Modeling and Nonlinear Analysis of Marine Three Axis Turntable[J]. The Journal of New Industrialization, 11(11): 89-95.

PDF(1726 KB)

Accesses

Citation

Detail

段落导航
相关文章

/