摘要
高地应力对隧道围岩的爆破振动响应具有一定影响。本文通过波动微分方程和分离变量法结合高地应力作用下砂岩类材料参数的变化规律求得适用于高地应力下的爆破地震波传播解析解,并通过实例分析,给出了隧道围岩中质点振动速度、加速度、应变参数随地应力大小变化规律,并借助物理模型试验装置对隧道围岩爆破振动响应随地应力的变化规律进行模型试验研究,最后将试验结果与解析解进行对比。由解析解的计算结果表明,相同围岩质点速度、加速度和应变峰值均随着地应力的增大而逐渐减小,且径向的速度、加速度和应变在低地应力阶段的衰减速率要大于高地应力阶段,随地应力的增加呈现出类似于负指数下降的趋势。在模型试验中,相比于震源附近围岩的振动响应,远离震源处地应力的变化对围岩爆破振动响应影响增大。模型试验测得的结果与解析解计算的结果相吻合。研究成果对地下隧道爆破设计和振动安全预测具有重要参考价值。
关键词:高地应力;爆破;振动响应;解析解;模型试验
Abstract
High in-situ stress has certain influence on the blasting vibration response of tunnel surrounding rock. The analytical solution of blasting seismic wave propagation suitable for sandstone under high ground stress is obtained through wave differential equation and variable separation method, combined with the parameter variation law of sandstone under high ground stress. Through example analysis, the variation law of particle vibration velocity, acceleration and strain parameters in tunnel surrounding rock with ground stress is given. With the aid of the physical model test device, the model test research was carried out on the blasting vibration response of the tunnel surrounding rock with the in-situ stress. The calculation results of the analytical solution show that the peak values of velocity, acceleration and strain of the same particle gradually decrease with the increase of in-situ stress, and the attenuation rate of radial velocity, acceleration and strain in the low ground stress stage is greater than that in the high ground stress stage. With the increase of in-situ stress, it shows a trend similar to negative exponential decline. In the model test, compared with the vibration response of surrounding rock near the source, the change of in-situ stress far away from the source has an increased impact on the blasting vibration response of surrounding rock. The results measured by the model test are consistent with those calculated by the analytical solution.The research results have important reference value for underground tunnel blasting design and vibration safety prediction.
Key words: high in-situ stress; blasting; vibration response; analytical solution; model test
关键词
高地应力 /
爆破 /
振动响应 /
解析解 /
模型试验
{{custom_keyword}} /
Key words
high in-situ stress /
blasting /
vibration response /
analytical solution /
model test
{{custom_keyword}} /
陈士海1,初少凤1,宫嘉辰1,刘闽龙1,常旭1,李海波2.
高地应力下砂岩隧道围岩爆破振动响应研究[J]. 振动与冲击, 2022, 41(17): 73-80
CHEN Shihai1, CHU Shaofeng1, GONG Jiachen1, LIU Minlong1, CHANG Xu1, LI Haibo2.
Blasting vibration response of sandstone tunnel surrounding rock under high ground stress[J]. Journal of Vibration and Shock, 2022, 41(17): 73-80
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Abo-Zena,Anas M. Radiation from a finite cylindrical explosive source[J]. Geophysics,1977,42(7): 1384-1393.
[2] 雷卫东,李宏军,柳纯. 爆破荷载应力波在无限弹性介质中传播的特征线法解[J]. 岩土力学,2016,37(10): 2979-2983+3002.
LEI Wei-dong,LI Hong-jun,LIU Chun. Solution of blasting-induced stress wave propagation in an infinite elastic medium based on characteristics method[J]. Rock and Soil Mechanics,2016,37(10): 2979-2983+3002.
[3] 李洪涛,卢文波,舒大强,等. 爆破地震波的能量衰减规律研究[J]. 岩石力学与工程学报,2010,29(S1): 3364-3369.
LI Hong-tao,LU Wen-bo,SHU Da-qiang,et al. Study of energy attenuation law of blast-induced seismic wave[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(S1): 3364-3369.
[4] 胡帅伟. 爆破开挖下围岩及支护锚杆动力响应特征研究[D]. 厦门:华侨大学,2018.
HU Shuai-wei. Study on dynamic response characteristics of surrounding rock and supporting bolts under blasting excavation[D]. Xiamen: Huaqiao University,2018.
[5] 李建功,康建宁,刘红,等.地震波在巷道弹塑性围岩中传播规律的数值模拟研究[J]. 煤炭学报,2011,36(S2): 282-286.
LI Jian-gong,KANG Jian-ning,LIU Hong,et al. Numerical simulation study on the propagation law of seismic wave in elastoplastic surrounding rock of roadway[J]. Journal of China Coal Society,2011,36(S2): 282-286.
[6] 余伟健,杜少华,王卫军. 高应力软岩近距离巷道工程的掘进扰动与稳定性[J],岩土工程学报,2014,36(1):57-64.
YU Wei-jian,DU Shao-hua,WANG Wei-jun. Excavation disturbance and stability of high-stress soft rock near roadway engineering[J],Chinese Journal of Geotechnical Engineering,2014,36(1): 57-64.
[7] 郑心铭,许海亮. 隧道掘进爆破地震波传播规律试验研究[J]. 四川建筑,2004(02): 104-106.
ZHENG Xin-ming,XU Hai-liang. Experimental Study on the Propagation of Blasting Seismic Waves in Tunnel Excavation [J]. Sichuan Architecture,2004(02): 104-106.
[8] DENG X F,ZHU J B,CHEN S G,et al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses[J]. Tunnelling and Underground Space Technology,2014,43(6): 88-100.
[9] Omer A. In-situ stress inference from damage around blasted holes[J]. Geosystem Engineering,2013,16(1): 83-91.
[10] Yilmaz O,Unlu T. Three dimensional numerical rock damage analysis under blasting load[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research,2013. 38: 266-278.
[11] 杨建华,吴泽南,姚池,等. 地应力对岩石爆破开裂及爆炸地震波的影响研究[J]. 振动与冲击,2020,39(13): 64-70+90.
YANG Jian-hua,WU Ze-nan,YAO Chi,et al. Influences of in-situ stress on blast-induced rock fracture and seismic waves[J]. Journal of Vibration and Shock,2020,39(13):64-70+90.
[12] 肖思友,姜元俊,刘志祥,等. 高地应力下硬岩爆破破岩特性及能量分布研究[J]. 振动与冲击,2018,37(15): 143-149.
XIAO si-you,JIANG Yuan-jun,LIU Zhi-xiang,et al. Hard rock blasting energy distribution and fragmentation characteristics under high earth stress[J]. Journal of Vibration and Shock,2018,37(15): 143-149.
[13] 吴亮,李凤,曾国伟. 爆破扰动下既有公路隧道围岩响应的模型试验[J]. 公路,2016,61(11): 244-248.
WU Liang,LI Feng,ZENG Guo-wei. Model test of surrounding rock response of existing highway tunnel under blast disturbance [J]. Highway,2016,61(11): 244-248.
[14] 袁璞,徐颖,薛俊华. 锚固支护深部巷道爆破开挖模型试验研究[J]. 岩石力学与工程学报,2016,35(9):1830-1836.
YUAN Pu,XU Ying,XUE Jun-hua. Model test study on blasting excavation of deep roadway with anchor support[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(9): 1830-1836.
[15] 肖正学,张志呈,李端明. 初始应力场对爆破效果的影响[J].煤炭学报,1996(05): 51-55.
XIAO Zheng-xue,ZHANG Zhi-cheng,LI Duan-ming. Influence of initial stress field on blasting effect[J]. Journal of China Coal Society,1996(05): 51-55.
[16] 张宇菲. 高地应力岩巷掏槽爆破围压效应模型试验研究[D]. 北京:中国矿业大学,2018.
ZHANG Yu-fei. Model test study on confining pressure effect of cut blasting in high geo-stress rock lane[D]. Beijing:China University of Mining and Technology,2018.
[17] 宫嘉辰,陈士海. 高地应力下砂岩力学参数和波速变化规律试验研究[J]. 山东大学学报(工学版),2020,50(03): 82-87+97.
GONG Jia-chen,CHEN Shi-hai. Experimental study on mechanical parameters and wave velocity variation of sandstone under high ground stress[J]. Journal of Shandong University (Engineering Science),2020,50(03): 82-87+97.
[18] Duvall,Wilbur I. Strain-wave shapes in rock near explosions[J]. 1953,18(2): 310-323.
[19] 杨宝俊,王宝昌,张伯军. 弹性波理论[M]. 沈阳:东北师范大学出版社,1990.
YANG Bao-jun,WANG Bao-chang,ZHANG Bo-jun. Elastic wave theory[M]. Shengyang: Northeast Normal University Press,1990.
[20] 张涛,陈士海,张伟,等. 掘进爆破振动作用下支护结构的安全距离[J]. 爆破,2014,31(01): 133-137.
ZHANG Tao,CHEN Shi-hai,ZHANG Wei,et al. Safe Distance of Supporting Structure under Action of Tunneling Blasting Vibration[J]. Blasting,2014,31(01): 133-137.
[21] 徐芝纶. 弹性力学简明教程[M]. 北京:高等教育出版社,2002.
XU Zhi-lun. A Concise Course of Elasticity.[M]. Beijing: Higher Education Press,2002.
[22] 徐挺. 相似理论与模型试验[M]. 北京:中国农业机械出版社,1982.
XU Ting. Similarity Theory and Model Test [M]. Beijing: China Agricultural Machinery Press,1982.
[23] 方开泰.正交与均匀试验设计[M]. 北京:科学出版社,2001.
FANG Kai-tai. Orthogonal and uniform experimental design[M]. Beijing: Science Press,2001.
[24] 李元松. 高等岩土力学[M]. 武汉:武汉大学出版社,2013.
LI Yuan-song. Advanced rock and soli mechanics[M]. Wuhan:Wuhan University Press,2013.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}