为揭示跨走滑断层斜拉桥的地震响应规律,以一座主跨360 m的斜拉桥为对象,采用OpenSees建立全桥三维非线性动力分析模型,以3组带有永久位移的走滑断层地震动作为输入,重点关注跨断层地震动作用下不同构件的响应特点。通过对比跨断层和近断层斜拉桥的地震响应以研究断层跨越效应的影响,同时分析斜拉桥在不同永久位移幅值和断层跨越角度时的响应规律。研究结果表明:相比于近断层斜拉桥,跨断层斜拉桥的地震响应显著增大,这主要体现于下塔柱横向响应、桥墩的纵向和横向响应、主梁的横向弯矩和扭矩,同时桥塔和主梁在震后还会有很大的残余变形;永久位移幅值和断层跨越角度是影响结构响应的重要因素,当跨越角度不为90°时,桥塔的纵向和扭转响应随永久位移呈增大趋势,桥塔也表现出纵向大残余变形,因此垂直跨越对桥塔一般较为有利,但此时主梁的横向及扭转响应又较非垂直跨越时更大,且对永久位移的大小很敏感;此外,受索、塔、梁之间耦合效应的影响,主梁的竖向响应和索力在非垂直跨越断层时也会发生较大改变。
关键词:跨断层斜拉桥;走滑断层;断层跨越效应;永久位移幅值;断层跨越角度
Abstract
To study seismic responses of the cable-stayed bridge crossing strike-slip fault rupture zone, a cable-stayed bridge with a main span of 360 m was taken as a prototype bridge, and 3D nonlinear dynamic finite-element model of the bridge was generated in OpenSees. Three ground motions with permanent displacement from strike-slip earthquakes were selected, and the response characteristics of different components under across-fault ground motion were investigated. The influence of fault crossing effect was studied by comparing the response of cable-stayed bridge in fault-crossing and near-fault, and the seismic responses under different permanent displacement and fault-crossing angles were investigated. The results show that seismic responses of the fault-crossing cable-stayed bridge are significantly larger than that of the near-fault cable-stayed bridge, especially in the transverse of the lower pylon, the longitudinal and transverse of the pier, the transverse bending moment and torsional moment of girder. Besides, there is a large residual deformation of the tower and girder after the earthquake. The permanent displacement and fault-crossing angle have a significant impact on the seismic response. When the angle is not equal to 90°, the longitudinal and torsional responses of the pylon increase significantly with the increase of permanent displacement, and the pylons have extensive longitudinal residual deformation. Therefore, it is beneficial to the tower when the fault-crossing angle approaches 90°, but the transverse and torsional responses of the girder are larger than other angles, and the girder response also increases with the increase of permanent displacement. When the fault and bridge are not perpendicular, the vertical response of girder and the cable force change greatly due to the interaction between towers, girder and cables.
Key words: fault-crossing cable-stayed bridge; strike-slip fault; fault-crossing effect; permanent displacement; fault-crossing angle
关键词
跨断层斜拉桥 /
走滑断层 /
断层跨越效应 /
永久位移幅值 /
断层跨越角度
{{custom_keyword}} /
Key words
fault-crossing cable-stayed bridge /
strike-slip fault /
fault-crossing effect /
permanent displacement; /
fault-crossing angle
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YANG S, MAVROEIDIS G P. Bridges crossing fault rupture zones: A review [J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 545-571.
[2] 贾宏宇, 杨健, 郑史雄, 等. 跨断层桥梁抗震研究综述 [J/OL]. 西南交通大学学报: 1-16 [2020-07-06]. http://kns.cnki.net/kcms/detail/51.1277.U.20200703.1732.004.html.
JIA Hongyu, YANG Jian, ZHENG Shixiong, et al. A review on aseismic bridges crossing fault rupture regions [J/OL]. Journal of Southwest Jiaotong University : 1-16 [2020-07-06]. https://kns.cnki.net/kcms/detail/51.1277.U.20200703.1732.004.html
[3] YANG S, MAVROEIDIS G P, UCAK A, et al. Effect of ground motion filtering on the dynamic response of a seismically isolated bridge with and without fault crossing considerations [J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 183-191.
[4] ZHANG F, LI S, WANG J, et al. Effects of fault rupture on seismic responses of fault-crossing simply-supported highway bridges [J]. Engineering Structures, 2020, 206: 110104.
[5] 惠迎新, 王克海, 吴刚, 等. 跨断层桥梁地震响应分析及合理跨越角度研究 [J]. 振动与冲击, 2015, 34(13): 6-11.
HUI Yingxin, WANG Kehai, WU Gang, et al. Seismic responses of bridges crossing faults and their best crossing angles [J]. Journal of Vibration and Shock, 2015, 34(13): 6-11.
[6] 张凡, 李帅, 王景全. 跨倾滑正断层桥梁地震响应数值模拟分析 [J/OL]. 建筑结构学报:1-13[2020-09-17]. https://doi.org/10.14006/j.jzjgxb.2020.0298
ZHANG Fan, LI Shuai, WANG Jingquan. Numerical analysis on seismic response of bridges crossing normal fault rupture zone [J/OL]. Journal of Building Structures:1-13[2020-09-17].. https://doi.org/10.14006/j.jzjgxb.2020.0298
[7] LIN Y, ZONG Z, BI K, et al. Experimental and numerical studies of the seismic behavior of a steel-concrete composite rigid-frame bridge subjected to the surface rupture at a thrust fault [J]. Engineering Structures, 2020, 205: 110105.
[8] SAIIDI M S, VOSOOGHI A, CHOI H, et al. Shake table studies and analysis of a two-span RC bridge model subjected to a fault rupture [J]. Journal of Bridge Engineering, 2014, 19(8): A4014003.
[9] UCAK A, MAVROEIDIS G P, TSOPELAS P. Behavior of a seismically isolated bridge crossing a fault rupture zone [J]. Soil Dynamics and Earthquake Engineering, 2014, 57: 164-178.
[10] PARK S W, GHASEMI H, SHEN J, et al. Simulation of the seismic performance of the Bolu Viaduct subjected to near-fault ground motions [J]. Earthquake Engineering & Structural Dynamics, 2004, 33(13): 1249-1270.
[11] 谷屹童, 袁万城, 党新志. 拉索限位装置对跨断层桥梁地震响应的影响[J]. 同济大学学报(自然科学版), 2020, 48(09): 1256-1263.
GU Yitong, YUAN Wancheng, DANG Xinzhi. Effect of cable restrainers on seismic response of cross-fault bridges [J]. Journal of Tongji University (Natural Science), 2020, 48(09): 1256-1263.
[12] LIN Y, ZONG Z, TIAN S, et al. A new baseline correction method for near-fault strong-motion records based on the target final displacement [J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 27-37.
[13] 王华治, 冯清海, 吕福钢. 基于多点激励的跨断层斜拉桥地震响应比较 [J]. 公路, 2018, 63(06): 148-150.
WANG Huazhi, FENG Qinghai, LV Fu-gang. Seismic response comparison of fault-crossing cable-stayed bridge under multi-support seismic excitations [J]. Highway, 2018, 63(06): 148-150.
[14] 曾聪, 江辉, 黄磊, 等. 跨断层独塔斜拉桥的非线性地震响应特性研究 [J]. 中国公路学报, 2021, 34(02): 230-245.
ZENG Cong, JIANG Hui, HUANG Lei, et al. Nonlinear seismic response characteristics of fault-crossing single-tower cable-stayed bridge [J]. China Journal of Highway and Transport, 2021, 34(02): 230-245.
[15] DREGER D, HURTADO G, CHOPRA A, et al. Near-field across-fault seismic ground motions [J]. Bulletin of the Seismological Society of America, 2011, 101(1): 202-221.
[16] WU Y, WU C. Approximate recovery of coseismic deformation from Taiwan strong-motion records [J]. Journal of Seismology, 2007, 11(2): 159-170.
[17] GOEL R K, CHOPRA A K. Linear analysis of ordinary bridges crossing fault-rupture zones [J]. Journal of Bridge Engineering, 2009, 14(3): 203-215.
[18] GOEL R K, CHOPRA A K. Nonlinear analysis of ordinary bridges crossing fault-rupture zones [J]. Journal of Bridge Engineering, 2009, 14(3): 216-224.
[19] SOMERVILLE P G. Characterizing near fault ground motion for the design and evaluation of bridges[C]// Proceedings of the 3rd National Seismic Conference and Workshop on Bridges and Highways. New York: State University of New York at Buffalo, 2002: 137-148.
[20] 惠迎新, 王克海. 基于多点激励位移输入模型的跨断层桥梁地震动输入方法 [J]. 东南大学学报(自然科学版), 2015, 45(3): 557-562.
Hui Yingxin, Wang Kehai. Earthquake motion input method for bridges crossing fault based on multi-support excitation displacement input model [J]. Journal of Southeast University (Natural Science), 2015, 45(3): 557-562.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}