基于模态试验的对接圆柱壳结构有限元模型修正

魏莎1,2,郑冰月1,张忠3,李旭龙1,陈立群1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 9-17.

PDF(1595 KB)
PDF(1595 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (17) : 9-17.
论文

基于模态试验的对接圆柱壳结构有限元模型修正

  • 魏莎1,2,郑冰月1,张忠3,李旭龙1,陈立群1,2
作者信息 +

Finite element model updating of butted cylindrical shell structure based on modal tests

  • WEI Sha1,2, ZHENG Bingyue1, ZHANG Zhong3, LI Xulong1, CHEN Liqun1,2
Author information +
文章历史 +

摘要

壳体组合结构广泛应用于船舶、土木和航空航天等工程领域。为获得精确的对接圆柱壳结构动力学模型,采用基于数学模型的响应面法对有限元模型多个参数进行优化,实现有限元模型修正。本文通过模态试验获得对接圆柱壳结构的实验模态参数,采用模态置信度检验模态试验结果。利用ANSYS有限元软件对结构进行有限元模态分析,提取整体模态。通过中心复合设计方法获取样本点构造多项式响应面模型,采用决定系数和均方根误差检验响应面的拟合精度。响应面模型计算结果与试验结果的误差构造目标函数,多目标遗传算法用于优化响应面参数,最终将修正后的参数带入有限元模型得到修正模型。对比修正前后的模态频率,结果表明修正后得到的有限元模态频率与实测模态频率间相对误差明显减小,进而验证了基于响应面方法在对接圆柱壳有限元模型修正中的有效性。

Abstract

Shell composite structures are widely used in marine engineering, civil engineering, aerospace engineering and other engineering fields. In order to obtain the accurate dynamic model of butted cylindrical shell structure, the response surface method based on mathematical model is used to optimize several parameters of the finite element model and realize the finite element model updating. Experimental modal parameters of butted cylindrical shell structures are obtained through modal test, and modal test results are verified by modal assurance criterion. The finite element software ANSYS is used to carry out finite element modal analysis and extract the whole modes. The polynomial response surface model is constructed by the central composite design method, and the fitting accuracy of the response surface model is determined by the determination coefficient and the root mean square error. The error between the response surface model calculation results and the test results is used to construct the objective function, and the multi-objective genetic algorithm is employed to optimize response surface parameters. Finally, modified parameters are brought into the finite element model to obtain the modified model. Compared with modal frequencies before and after the model updating, results show that relative errors between the obtained finite element modal frequencies and the measured modal frequencies are significantly reduced, which verifies the effectiveness of the response surface method in the finite element model updating of the butted cylindrical shell structure.

关键词

对接圆柱壳结构 / 模态分析 / 有限元模型修正 / 响应面模型 / 灵敏度分析

Key words

Butted cylindrical shell structure / modal analysis / finite element model updating / response surface model / sensitivity analysis

引用本文

导出引用
魏莎1,2,郑冰月1,张忠3,李旭龙1,陈立群1,2. 基于模态试验的对接圆柱壳结构有限元模型修正[J]. 振动与冲击, 2022, 41(17): 9-17
WEI Sha1,2, ZHENG Bingyue1, ZHANG Zhong3, LI Xulong1, CHEN Liqun1,2. Finite element model updating of butted cylindrical shell structure based on modal tests[J]. Journal of Vibration and Shock, 2022, 41(17): 9-17

参考文献

[1] TEDESCO J W, KOSTEM C N , Arturs Kalnins §. Free vibration analysis of circular cylindrical shells [J]. Computers & Structures, 1987, 25(5):677-685.
[2] RUXIN GAO, XIANBO SUN, HAITAO LIAO, et al. Symplectic wave-based method for free and steady state forced vibration analysis of thin orthotropic circular cylindrical shells with arbitrary boundary conditions [J]. Journal of Sound and Vibration, 2020, 491: 115756-1-13.
[3] 吴仕昊, 瞿叶高, 华宏星. 圆锥壳-圆柱壳-球壳组合结构自由振动分析[J]. 振动与冲击, 2013, 32(06): 109-114+120.
WU Shi-hao, QU Ye-gao, HUA Hong-xing. Free vibration analysis of joined conical shell-cylindrical shell-spherical shell combined structure [J]. Journal of Vibration and Shock, 2013, 32(06): 109-114+120.
[4] D RIBEIRO, CANADA R, DELGADO R, et al. Finite element model updating of a bowstring-arch railway bridge based on experimental modal parameters [J]. Engineering Structures, 2012, 40: 413-435.
[5] ALAMDARI M M, LI J, SAMALI B, et al. Nonlinear joint model updating in assembled structures [J]. Journal of Engineering Mechanics, 2015, 140(7): 04014042-1-11.
[6] YUAN Z X, YU K P. Finite element model updating of damped structures using vibration test data under base excitation [J]. Journal of Sound & Vibration, 2015, 340: 303-316.
[7] 傅志方, 华宏星. 模态分析理论与应用[M]. 上海:上海交通大学出版社, 2000.
[8] MOTTERSHEAD J E, FRISWELL MI. Model updating in structural dynamics: a survey[J], Journal of Sound and Vibration, 1993,167(2): 347-375.
[9] ZONG Z H, REN W X.. Finite element model updating and model validation of bridge structures[M]. Beijing: China Communications Press. 2012.
[10] ZHU H P, HAO X Z. Comparison of analytical approaches to structural model updating using modal test data[J]. Earth and Space, 2006:1-8.
[11] 苏忠亭, 徐 达, 杨明华, 等. 基于模态试验的某火炮身管有限元模型修正[J]. 振动与冲击,2012, 31(24): 54-59.
Su Zhong-ting, Xu Da, Yang Ming-hua, et al. Updating of the Finite Element Model of a Gun Barrel Based on Modal Test [J]. Journal of Vibration and Shock, 2012, 31(24): 54-59.
[12] 徐张明, 沈荣瀛, 华宏星, 等. 一种改进的利用频响函数进行有限元模型修正的方法[J]. 振动与冲击, 2002(03): 45-47+94.
Xu Zhang-ming, Shen Rong-ying, Hua Hong-xing. et al. An improved method of finite element model updating using frequency response function [J]. Journal of Vibration and Shock, 2002(03): 45-47+94.
[13] 陈德朋. 基于模态参数的白车身有限元模型修正[D]. 湖南大学, 2018.
Chen De-peng. Finite element model modification of body-in-white based on modal parameters [D]. Hunan University, 2018.
[14] 麻越垠, 陈万华, 王元兴, 等. 基于响应面方法的叶栅摆动装置有限元模型修正[J]. 振动与冲击, 2016, 35(22): 232-236+242.
Ma Yue-yin, Chen Wan-hua, Wang Yuan-xing, et al. Finite element model modification of cascade swing device based on response surface method [J]. Journal of Vibration and Shock, 2016, 35(22): 232-236+242.
[15] 秦仙蓉, 潘 杰, 徐 俭, 等. 塔式起重机结构有限元模型修正的响应面方法[J]. 振动与冲击, 2018, 37(06): 244-250.
Qin Xian-rong, Pan Jie, Xu Jian, et al. Response surface method for tower crane structure finite element model updating [J]. Journal of Vibration and Shock, 2018, 37(06): 244-250.
[16] 鲍 诺, 王春洁, 赵军鹏, 等. 基于响应面法的结构动力学模型修正[J]. 振动与冲击, 2013, 32(16): 54-58.
Bao Nuo, Wang Chun-jie, Zhao Jun-peng, et al. .Revision of structural dynamics model based on response surface method [J]. Journal of Vibration and Shock, 2013, 32(16): 54-58.
[17] 李星占, 董兴建, 岳晓斌, 等. 振动响应传递率的动力学特性研究及其在工作模态分析中的应用[J]. 振动与冲击, 2019, 38(09): 62-70.
Li Xing-zhan, Dong Xing-jian, Yue Xiao-bin, et al. Research on dynamic characteristics of vibration response transmission rate and its application in working modal analysis [J]. Journal of Vibration and Shock, 2019, 38(09): 62-70.
[18] 杜宪峰, 舒歌群, 卫海桥, 等. 基于模态方法的柴油机机体结构建模技术研究[J]. 振动与冲击, 2015, 34(21): 157-161.
Du Xian-feng, Shu Ge-qun, Wei Hai-qiao, et al.. Research on diesel engine block structure modeling technology based on modal method [J]. Journal of Vibration and Shock, 2015, 34(21): 157-161.
[19] 王检耀, 刘铸永, 洪嘉振. 基于两种接触模型的柔性体间多次微碰撞问题研究[J]. 振动与冲击, 2018, 37(11): 202-206.
Wang Jian-yao, Liu Zhu-yong, Hong Jia-zhen. Research on multiple micro-collisions between flexible bodies based on two contact models [J]. Vibration and Shock, 2018, 37(11): 202-206.
[20] 张 盛, 方 杰, 张洪武, 等. 基于多重多级动力子结构的Lanczos算法[J]. 振动与冲击, 2012, 31(06): 23-26+47.
Zhang Sheng, Fang Jie, Zhang Hong-wu, et al.. Lanczos algorithm based on multiple multi-level dynamic substructures [J]. Journal of Vibration and Shock, 2012, 31(06): 23-26+47.
[21] ALIREZA MOJTAHEDI, SHAHRIAR BAYBORDI, AMIN FATHI, et al. A hybrid particle swarm optimization and genetic algorithm for model updating of a pier-type structure using experimental modal analysis [J]. China Ocean Engineering, 2020, 34(05):697-707.
[22] 曹银行, 柳贡民, 张 龙. 基于遗传算法的分支管路系统动力学优化设计[J]. 振动与冲击, 2021, 40(09): 221-227+253.
Cao Yin-hang, Liu Gong-min, Zhang Long. Branch pipe system dynamics optimization design based on genetic algorithm [J]. Journal of Vibration and Shock, 2021, 40(9): 221-227+253.
[23] 庞祎帆, 傅戈雁, 王明雨, 等. 基于响应面法和遗传神经网络模型的高沉积率激光熔覆参数优化[J]. 中国激光, 2021, 48(06): 152-162.
Pang Yi-fan, Fu Ge-yan, Wang Ming-yu, et al. Parameter optimization of laser cladding with high deposition rate based on response surface method and genetic neural network model [J]. Chinese Journal of Lasers, 2021, 48(06): 152-162.
[24] 秦玉灵, 孔宪仁, 罗文波. 基于径向基函数响应面的机翼有限元模型修正[J]. 北京航空航天大学学报, 2011, 37(11): 1465-1470.
Qin Yu-ling, Kong Xian-ren, Luo Wen-bo. Based on radial basis function response surface finite element model of fixed wing [J]. Journal of Beijing university of aeronautics and astronautics, 2011, 37 (11) : 1465-1470.
[25] 张冬冬, 郭勤涛. Kriging响应面代理模型在有限元模型确认中的应用[J]. 振动与冲击, 2013, 32(09): 187-191.
Zhang Dong-dong, Guo Qin-tao. Application of kriging response surface proxied model in finite element model confirmation [J]. Journal of Vibration and Shock, 2013, 32(09): 187-191.
[26] 程霄翔, 费庆国, 何顶顶, 等. 基于响应面的大型输电塔结构有限元模型动力修正[J]. 振动与冲击, 2011, 30(05): 116-122.
Cheng Xiao-xiang, Fei Qing-guo, He Ding-ding, et al. Dynamic modification of finite element model of large transmission tower structure based on response surface [J]. Journal of Vibration and Shock, 2011, 30(05): 116-122.
[27] 陈学前, 沈展鹏, 刘信恩. 基于响应面与灵敏度分析的区间不确定性参数识别方法[J]. 振动与冲击, 2019, 38(16): 267-273.
Chen Xue-qian, Shen Zhan-peng, Liu Xin-en. Interval uncertainty parameter identification method based on response surface and sensitivity analysis [J]. Journal of Vibration and Shock, 2019, 38(16): 267-273.
[28] 彭 涛, 田仲初, 张建仁, 等. 基于多目标优化的混凝土斜拉桥静动力有限元模型修正[J]. 振动与冲击, 2018, 37(21): 108-116.
Peng Tao, Tian Zhong-chu, Zhang Jian-ren, et al. Static and dynamic finite element model updating of concrete cable-stayed bridge based on multi-objective optimization [J]. Journal of Vibration and Shock, 2018, 37(21): 108-116.
[29] 盛万兴, 叶学顺, 刘科研, 等.基于NSGA-Ⅱ算法的分布式电源与微电网分组优化配置[J]. 中国电机工程学报, 2015, 35(18): 4655-4662.
Sheng Wan xing, Ye Xue shun, Liu Ke jian, et al. Optimal configuration of distributed generation and microgrid grouping based on NSGA-Ⅱ algorithm [J]. Proceedings of the CSEE, 2015, 35(18): 4655-4662.
[30] 王文玺, 吴存学, 干能强, 等. 基于中心组合设计的主动进气格栅多开度控制模型的建立[J]. 汽车工程, 2015, 37(11): 1240-1245.
Wang Wen-xi, Wu Cun-xue, Qian Neng-qiang, et.al. The establishment of the multi-opening control model of the active air intake grille based on the central combination design [J]. Automotive Engineering, 2015, 37(11): 1240-1245..

PDF(1595 KB)

Accesses

Citation

Detail

段落导航
相关文章

/