多质心有限质点法及其在工业机器人动力学建模的应用

刘目珅1,2, 张飞斌1,王天杨1,褚福磊1,程卫东2,刘佑民3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 1-8.

PDF(1909 KB)
PDF(1909 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 1-8.
论文

多质心有限质点法及其在工业机器人动力学建模的应用

  • 刘目珅1,2, 张飞斌1,王天杨1,褚福磊1,程卫东2,刘佑民3
作者信息 +

Multi-centroid finite point method and its application to the dynamic modeling of industrial robots

  • LIU Mushen1,2,ZHANG Feibin1,WANG Tianyang1,CHU Fulei1,CHENG Weidong2,LIU Youmin3
Author information +
文章历史 +

摘要

工业机器人动力学建模对提高机器人末端定位精度有着重要意义。传统工业机器人动力学建模方法多基于机器人杆件刚性假设,未能满足因臂杆柔性引发的机器人弹性振动现象的建模需求。为此,对多质心有限质点法及其在工业机器人动力学建模的应用进行研究。该方法使用简便统一的框架对杆件柔性变形进行动力学分析,其逆向运动方式,相对于传统有限质点法,不仅推导流程更为简单方便,而且有效降低了单元刚体位移对节点纯变形求解的影响,提高了对于工业机器人这种刚体大转动-柔性变形耦合模型计算的收敛性。通过悬臂梁模型验证了该方法的准确性和收敛性。进一步将多质心有限质点法结合正运动学对工业机器人动力学建模,将建模结果与实验数据对比,验证了该模型的结果与实验结果有着较好的重合度。

Abstract

The dynamic modeling of industrial robots is of great significance to improve the positioning accuracy of the robot end. Traditional industrial robot dynamics modeling methods are mostly based on the rigidity assumption of the robot rod, which fails to meet the modeling requirements of considering the robot elastic vibration phenomenon caused by the flexibility of the arm. For this reason, the paper studies the multi-centroid finite particle method and its application in the dynamic modeling of industrial robots. In this method, a simple and unified frame was used to perform dynamic analysis on the flexible deformation of the member. Compared with the traditional finite particle method, the reverse movement method not only has a simpler and more convenient derivation process, but also effectively reduces the influence of element rigid body displacement to solve the pure deformation at the node. This improves the computational convergence of the rigid body large rotation-flexible deformation coupling model for industrial robots. The cantilever beam model verified the accuracy and convergence of the method proposed in the paper. Furthermore, the multi-centroid finite particle method was combinedly used with the positive kinematics to model the dynamics of the industrial robot, and the modeling results were compared with the experimental data, which verifies that the results by the model and the experimental results have a good degree of coincidence.

关键词

多质心有限质点法 / 逆向运动 / 工业机器人 / 动力学建模

Key words

multi-centroid finite particle method / reverse movement / industrial robot / dynamic modeling

引用本文

导出引用
刘目珅1,2, 张飞斌1,王天杨1,褚福磊1,程卫东2,刘佑民3. 多质心有限质点法及其在工业机器人动力学建模的应用[J]. 振动与冲击, 2022, 41(18): 1-8
LIU Mushen1,2,ZHANG Feibin1,WANG Tianyang1,CHU Fulei1,CHENG Weidong2,LIU Youmin3. Multi-centroid finite point method and its application to the dynamic modeling of industrial robots[J]. Journal of Vibration and Shock, 2022, 41(18): 1-8

参考文献

[1]戎保,芮筱亭,王国平,等.多体系统动力学研究进展[J]. 振动与冲击, 2011,30(7): 178-187.
RONG Bao, RUI Xiaoting, WANG Guoping, et al. Developments of studies on multibody system dynamics[J]. Journal of Vibration and Shock, 2011,30(7): 178-187.
[2]沈国栋. 考虑关节柔性的六自由度串联工业机器人动力学建模与末端抖动抑制[D]. 济南:山东大学, 2020.
[3]罗尧治,喻莹,许贤. 空间结构分析的新方法: 有限质点法[C]//第十三届空间结构学术会议.深圳:中国土木工程学会,2010.
[4]TING E C, SHIH C, WANG Y K. Fundamentals of a vector form intrinsic finite element: part Ⅰ. Basic procedure and a plane frame element[J]. Journal of Mechanics, 2004,20(2): 113-122.
[5]TING E C, SHIH C, WANG Y K. Fundamentals of a vector form intrinsic finite element: part Ⅱ. Plane solid  elements[J]. Journal of Mechanics, 2004,20(2): 123-132.
[6]SHIH C, WANG Y K, TING E C. Fundamentals of a vector form intrinsic finite element: part Ⅲ. Convected material frame and examples[J]. Journal of Mechanics, 2004,20(2): 133-143.
[7]罗尧治,喻颖. 结构复杂行为分析的有限质点法[M]. 北京: 科学出版社,2019.
[8]郑延丰. 结构精细化分析的有限质点法计算理论研究[D]. 杭州: 浙江大学,2015.
[9]王震,赵阳,杨学林.基于六面体网格的向量式有限元分析及应用[J]. 计算力学学报, 2018,35(4): 480-486.
WANG Zhen, ZHAO Yang, YANG Xuelin. Analysis and application of the vector form intrinsic finite element based on the hexahedral grid[J]. Chinese Journal of Computational Mechanics, 2018,35(4): 480-486.
[10]HOU X Y, ZONG D F. Solid structure analysis with large deformation of eight-node hexahedral element using vector form intrinsic finite element[J]. Advances in Structural Engineering, 2018,21(6): 852-861.
[11]丁承先, 段元锋, 吴东岳. 向量式结构力学[M]. 北京: 科学出版社,2012.
[12]王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003.
[13]王震,赵阳,胡可.基于向量式有限元的三角形薄板单元[J]. 工程力学, 2014,31(1): 37-45.
WANG Zhen, ZHAO Yang, HU Ke. Triangular thin-plate element based on vector form intrinsic finite element[J]. Engineering Mechanics, 2014,31(1): 37-45.
[14]赵亮.带有移动末端执行器的柔性机械臂的动力学分析[J]. 振动与冲击, 2020,39(8): 112-117.
ZHAO Liang. Dynamic analysis of a flexible robotic arm carrying a moving end effector[J]. Journal of Vibration and Shock, 2020,39(8): 112-117.

PDF(1909 KB)

569

Accesses

0

Citation

Detail

段落导航
相关文章

/