基于微分变换法的薄壁箱梁的自由振动分析

谭敏尧1,何洋2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 121-126.

PDF(1267 KB)
PDF(1267 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 121-126.
论文

基于微分变换法的薄壁箱梁的自由振动分析

  • 谭敏尧1,何洋2
作者信息 +

Free vibration analysis of a thin-walled box girder based on the differential transformation method

  • TAN Minyao1,HE Yang2
Author information +
文章历史 +

摘要

为了提高薄壁箱梁自由振动的高阶固有频率解的精确度,提出了一种通用的数学方法,分析薄壁箱梁的自由振动特性,包含了其横截面形变的影响。基于广义坐标原理,利用虚功变分原理推导出运动控制方程,在相应的边界条件和连续条件下,运用微分变换法求解分析固有频率。该模型考虑了箱梁截面的翘曲和畸变形变,具有一定的通用性和有效性。算例分析中,计算薄壁箱梁的固有频率和绘制模态振型图,并与已知文献进行比较可知:本文求解固有频率的理论方法与已知文献的结果有较好的吻合度,此方法通过考虑畸变效应影响提高薄壁箱梁的自由振动固有频率的精确度,且可通用于不同边界条件下的箱梁固有频率计算;在振型分析中,横向位移和畸变形变占有重要地位。
关键词:弯曲;翘曲;扭转;畸变;微分变换法

Abstract

In order to improve the accuracy of the higher order natural frequency solution of the free vibration of thin-walled box girder, a general mathematical method is proposed to analyze the free vibration characteristics of thin-walled box girder, including the influence of cross-section deformation. Based on the generalized coordinate principle, the governing equations of motion and the corresponding boundary conditions and continuous conditions are derived by the variational principle of virtual work, and then solved by the differential transformation method. The model takes into account the warping and distortion deformation of the box girder loading surface, which has universality and effectiveness. In the example analysis, the natural frequencies were calculated and the mode shape diagrams were drawn. Compared with the known literature, it can be seen that: The theoretical method of solving natural frequency in this paper is in good agreement with the results of known literatures. This methods improves the accuracy of natural frequency of free vibration of thin-walled box girder by considering distortion effect. It can be used to calculate the natural frequency of box girder under different boundary conditions. Transverse deformation and distortion deformation play an important role in the mode diagrams.
Key words: bending; warping; torsion; distortion; Differential transform method

关键词

弯曲 / 翘曲 / 扭转 / 畸变 / 微分变换法

Key words

bending / warping / torsion / distortion / Differential transform method

引用本文

导出引用
谭敏尧1,何洋2. 基于微分变换法的薄壁箱梁的自由振动分析[J]. 振动与冲击, 2022, 41(18): 121-126
TAN Minyao1,HE Yang2. Free vibration analysis of a thin-walled box girder based on the differential transformation method[J]. Journal of Vibration and Shock, 2022, 41(18): 121-126

参考文献

[1] .Prokić A., Lukić D.. Dynamic analysis of thin-walled closed-section beams [J]. Journal of Sound and Vibration. 2007. 302:962-980.
[2] Li Jun, Shen R, Hua H. Bending-torsional coupled dynamic response of axially loaded composite Timosenko thin-walled beam with closed cross-section [J]. Compostie Structures. 2004. 64:23-35.
[3] Huang D., Wang T. et al. Vibration of thin-walled box-girder bridges excited by vehicles [J]. Journal of Structural Engineering. 1995. 121(9):1330-1337.+
[4] Hamed E., Frostig Y.. Free vibrations of multi-girder and multi-cell box bridges with transverse deformations effects [J]. Journal of Sound and Vibration. 2005. 279: 699-722.
[5] Sari M., Al-Kouz W., Al-Waked R. Bending-torsional-coupled vibrations and buckling characteristics of single and double composite Timoshenko beams [J]. Advances in Mechanical Engineering. 2019. 11(3):1-16.
[6] Burlon A, Failla G, Arena F., Coupled bending-torsional frequency response of beams with attachments: exact solutions including warping effects [J]. 2018, 229: 2445-2475.
[7] Burlon A, Failla G, Arena F., Coupled bending and torsional free vibrations of beams with in-span supports and attached masses [J]. European Journal of Mechanics–A/Solids, 2017, 66: 387-411.
[8] 赵佳雷等, 基于弹性力学的裂缝梁自由振动分析 [J]. 振动与冲击, 2020. 39(12): 78-84.
J. Zhao, D. Zhou. Free vibration of a beam with a crack based on elasticity [J]. Journal of Vibration and Shock, 2020. 39(12): 78-84
[9] 赵家奎. 微分变换及其在电路中的应用[M]. 武汉: 华中理工大学出版社, 1988.
[10] Kaya M. O, Ozgumus O.O. Flexural-torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM [J]. 2007, 306:495-506.
[11] 李伟, 管鱼龙, 谢浩等. 基于微分变换法的变截面梁振动研究及有限元数值模拟[J]. 大学物理实验. 2020. 3(33): 5-9.
Li Wei, Guan yuling, Xie Hao et al. Vibration research and finite element numerical simulation of variable section beam based on differential transformation method [J]. Physical Experiment of College. 2020. 3(33): 5-9.
[12]滕兆春, 衡亚洲, 崔盼等.变刚度Winkler地基上受压非均质矩形板的自由振动与屈曲特性 [J]. 振动与冲击. 2019. 38(3): 258-266
Teng Z, Heng Y, Cui P al.Free vibration and buckling characteristics of compressed non-homogeneous rectangular plates on Winkler foundation with variable stiffness [J]. Journal of Vibration and Shock. 2019. 38(3): 258-266.
[13] Tan M., Cheng W.. Non-linear lateral buckling analysis of unequal thickness thin-walled box beam under an eccentric load [J]. Thin-walled Structures. 2019. 139: 77-90.
[14] Kim J.H., Kim Y.Y.. Thin-walled closed box beam element for static and dynamic analysis [J]. Int. J. Numer. Methods Eng. 1999. 45: 473-490.

PDF(1267 KB)

Accesses

Citation

Detail

段落导航
相关文章

/