交变配流阀控电液激振方法及振动特性分析

赵国超1,2,李南奇1,3,王慧1,2,张建卓1,2,张长帅1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 143-149.

PDF(1597 KB)
PDF(1597 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 143-149.
论文

交变配流阀控电液激振方法及振动特性分析

  • 赵国超1,2,李南奇1,3,王慧1,2,张建卓1,2,张长帅1
作者信息 +

Electro-hydraulic vibration method and vibration characteristic analysis of the electro-hydraulic vibration system controlled by an alternating distribution valve

  • ZHAO Guochao1,2,LI Nanqi1,3,WANG Hui1,2,ZHANG Jianzhuo1,2,ZHANG Changshuai1
Author information +
文章历史 +

摘要

为探索实现主动激振的新途径,丰富电液激振方法的多样性,提出一种利用交变配流阀控制液压缸的电液激振方法。对交变配流阀进行结构设计并建立配流过程的数学模型,分析交变配流阀控电液激振系统的振动机理,结合Matlab数值计算获得交变配流阀的配流信号,建立交变配流阀控电液激振系统的AMESim仿真模型,研制交变配流阀控电液激振实验台进行实验测试,分析供油压力和电机转速对电液激振系统振动特性的影响规律。研究结果表明:供油压力、电机转速对电液激振系统振动特性具有明显影响,供油压力升高,电液激振系统的振动位移、加速度幅值分别提高了8.14%和5.57%;电机转速增加,电液激振系统的振动位移、加速度幅值分别降低了79.71%和58.21%;电液激振系统AMESim仿真和实验结果平均误差为8.72%,整体趋势基本一致,验证了仿真模型的正确性和激振方法的可行性。
关键词:交变配流阀;电液激振;振动特性;AMESim仿真;实验研究

Abstract

In order to explore a new way to realize active excitation and enrich the variety of electro-hydraulic vibration methods, an electro-hydraulic vibration method using an alternating distribution valve to control a hydraulic cylinder is proposed. The alternating distribution valve's structure is designed and the mathematical model of distribution process is established. The vibration mechanism of the electro-hydraulic vibration system controlled by the alternating distribution valve is analyzed. Furthermore, the alternating distribution valve's distribution signal is obtained by Matlab numerical calculation, and the AMESim simulation model of the electro-hydraulic vibration system controlled by the alternating distribution valve is established. Moreover, the alternating distribution valve controlled electro-hydraulic vibration bench is developed to test the influence of oil supply pressure and motor speed on the electro-hydraulic vibration system's vibration characteristics. The research results show that oil supply pressure and motor speed significantly affect the electro-hydraulic vibration system's vibration characteristics. With the oil supply pressure increase, the vibration displacement and acceleration of the electro-hydraulic vibration system increase by 8.14% and 5.57%, respectively.With the motor speed increase, the vibration displacement and acceleration of the electro-hydraulic vibration system decreased by 79.71% and 58.21%, respectively. The average error between AMESim simulation and experiment test of the electro-hydraulic vibration system is 8.72%. The overall trend is consistent, verifying the simulation model's correctness and the feasibility of this vibration method.
Key words:alternating distribution valve;electro-hydraulic vibrator exciter;vibration characteristics;AMESim simulation;experimental study

关键词

交变配流阀 / 电液激振 / 振动特性 / AMESim仿真 / 实验研究

Key words

alternating distribution valve / electro-hydraulic vibrator exciter / vibration characteristics / AMESim simulation / experimental study

引用本文

导出引用
赵国超1,2,李南奇1,3,王慧1,2,张建卓1,2,张长帅1. 交变配流阀控电液激振方法及振动特性分析[J]. 振动与冲击, 2022, 41(18): 143-149
ZHAO Guochao1,2,LI Nanqi1,3,WANG Hui1,2,ZHANG Jianzhuo1,2,ZHANG Changshuai1. Electro-hydraulic vibration method and vibration characteristic analysis of the electro-hydraulic vibration system controlled by an alternating distribution valve[J]. Journal of Vibration and Shock, 2022, 41(18): 143-149

参考文献

[1] 邢彤, 左强, 杨永帅, 等. 液压激振技术的研究进展[J]. 中国机械工程, 2012, 23(03):362-367+377.
XING Tong, ZUO Qiang, YANG Yongshuai, et al. Progresses of research on hydraulic vibration technology[J] China Mechanical Engineering, 2012, 23(3):362-367+377.
 [2] 吕云嵩. 基于液压变压器蓄能器变刚度机构的液压激振方法[J]. 振动与冲击, 2015, 34(23): 182-186.
LU Yunsong. Hydro-vibration method based on variable-stiffness elastic mechanismconsisting of hydro-t ransformer and accumulator[J]. Journal of Vibration and Shock, 2015, 34(23): 182-186.
 [3] LIU Yi, WANG Tao, GONG Guofang, et al. Present status and prospect of high-frequency electro-hydraulic vibration control technology[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 1-16.
 [4] LIU Yi, GONG Guofang, YANG Huayong, et al. Regulating characteristics of new tamping device exciter controlled by rotary valve[J]. IEEE/ASME Transactions on Mechatronics, 2015, 21(1): 497-505.
 [5]  刘毅,龚国芳. 新型振动捣固臂的动力学分析[J]. 中南大学学报(自然科学版), 2015, 46(09): 3211-3216.
LIU Yi, GONG GuoFang. Kinetic analysis of new tamping arm[J]. Journal of Central South University (Science and Technology), 2015, 46(09): 3211-3216.
 [6] LIU Yi, ZHENG Yuxi, SONG Ruiyin, et al. Wave generation characteristic analysis of piston and flap type wave maker with rotary-valve-control vibrator[J]. Journal of Vibration and Control, 2020, 26(15): 1297-1308
 [7] LIU Yi, ZHENG Jiafei, SONG Ruiyin, et al. Simple push-type wave generating method using digital rotary valve control[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 1-11.
 [8] WU Yongping, XIONG Chengwei, LIU Yi, et al. Vibration Frequency Characteristic Study of Two-stage Excitation Valve Used in Vibration Experiment System[J]. Mechanical Engineering Science, 2020, 2(1): 30-35.
 [9] 阮健, 李胜, 裴翔, 等. 2D阀控电液激振器[J]. 机械工程学报, 2009, 45(11):125-132.
RUAN Jian, LI Sheng, PEI Xiang, et al. Electrohydraulic vibration exciter controlled by 2D valve[J]. Journal of Mechanical Engineering, 2009, 45(11): 25-132.
[10] 徐梓斌, 阮健. 新型电液激振器特性研究[J]. 中国机械工程, 2009, 20(04): 455-460.
XU Zibin, RUAN Jian. Research on performance of a new electrohydraulic vibration exciter[J]. China Mechanical Engineering, 2009, 20(04): 455-460.
[11] 王鹤, 龚国芳, 周鸿彬, 等. 基于不同阀口形状的阀芯旋转式电液激振器振动波形研究[J]. 机械工程学报, 2015, 51(24): 146-152.
WANG He, GONG Guofang, ZHOU Hongbin, et al. Research on vibration waveform of electro-hydraulicexciter with rotary valve based on different valveport shapes[J]. Journal of Mechanical Engineering, 2015, 51(24): 146-152.
[12] REN Yan, TANG Hesheng, XIANG Jiawei. Experimental and numerical investigations of hydraulic resonance characteristics of a high-frequency excitation system[J]. Mechanical Systems and Signal Processing, 2019, 131: 617-632.
[13] WANG Tao, LIU Yi, XU Qiaoning, et al. Novel structure for waveform control of twin rotary flowrate valve controlled vibration exciter[J]. IEEE/ASME Transactions on Mechatronics, 2020, 1: 1-6.
[14] 李超, 单东升, 赵东华, 等. 基于AMESim的液压振动系统建模及仿真研究[J]. 机床与液压, 2015, 43(07):165-167+171.
LI Chao, SHAN Dongshen, Zhao Donghua, et al. Modeling and simulation research of hydraulic vibration system based on AMESim[J]. Machine Tool & Hydraulics, 2015, 43(07):165-167+171.
[15] 蒙臻, 倪敬, 武传宇. 振动拉削双阀激振系统输出波形稳定性分析及实验研究[J]. 振动与冲击, 2017, 36(20):84-90.
MENG Zhen, NI Jing, WU Chuanyu. An experiment and analysis on output waveform stability of a dual-valve excitation system during vibration broaching[J]. Journal of Vibration and Shock, 2017, 36(20): 84-90.
[16] 蒙臻, 倪敬, 武传宇. 振动拉削系统振幅衰减特性分析与实验研究[J]. 中国机械工程, 2017, 28(05): 518-524.
MENG Zhen, NI Jing, WU Chuanyu. Analysis and experimental study of amplitude attenuation characteristics of vibration broaching systems[J]. China Mechanical Engineerin, 2017, 28(05): 518-524.
[17] 李小彭, 赵光辉, 梁亚敏, 等. 旋转阀式液压振动沉拔桩机实验系统特性分析[J]. 振动与冲击, 2014, 33(21):90-95.
LI Xiaopeng, ZHAO Guanghui, LIANG Yamin, et al. Dynamic characteristics of a test system for a hydraulic vibratory piling machine with a rotary valve[J]. Journal of Vibration and Shock, 2014, 33(21): 90-95.
[18] 廖茂林. 基于钻头-岩石碰撞的激振冲击系统的非线性动力学研究[J]. 机械工程学报, 2020, 56(21): 121-130.
LIAO Maolin. Nonlinear dynamics of a vibro-impact system for indenter-rock interaction[J]. Journal of Mechanical Engineering, 2020, 56(21): 121-130.
[19] 刘毅, 王登, 郑堤. 转阀控制式脉冲波生成方法[J]. 机械工程学报, 2018, 54(20): 279-286.
LIU Yi, WANG Deng, ZHENG Di. Pulse wave generation method using rotary valve control[J]. Journal of Mechanical Engineering, 2018, 54(20): 279-286.
[20] 张啟晖, 熊伟, 阮健, 等. 车辆换档用2D数字缓冲阀的研究[J]. 机械工程学报, 2018, 54(20): 206-212.
ZHANG Qihui, XIONG Wei, RUAN Jian. Research on 2D digital buffering valve for vehicle shift[J]. Journal of Mechanical Engineering, 2018, 54(20): 206-212.
[21] 蔡改贫, 刘鑫, 祁步春. 基于AMESim的转阀式液压激振器工艺参数匹配[J]. 湖南科技大学学报(自然科学版), 2019, 34(02): 71-79.
CAI Gaipin, LIU Xin, QI Buchun. Matching process parameters of rotary valve hydraulic actuator based on AMESim[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2019, 34(2): 71-79.
[22] 吴万荣, 黄潜, 吴威威, 等. 基于AMESim的两自由度高频激振转阀的仿真研究[J]. 世界科技研究与发展, 2016, 38(06): 1228-1233.
WU Wanrong, HUANG Qian, WU Weiwei, et al. Simulation of high frequency excitation rotary valve with two degrees of freedom based on AMESim[J]. World SCI-TECH R&D, 2016, 38(06): 1228-123

PDF(1597 KB)

443

Accesses

0

Citation

Detail

段落导航
相关文章

/