尼龙织物叠层橡胶支座压缩与压剪性能试验研究

吴宜峰1,张琰1,李爱群1,2,徐泓1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 150-156.

PDF(1966 KB)
PDF(1966 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 150-156.
论文

尼龙织物叠层橡胶支座压缩与压剪性能试验研究

  • 吴宜峰1,张琰1,李爱群1,2,徐泓1
作者信息 +

Experimental analysis on the compression and compressive shear performances of a nylon fabric laminated rubber bearing

  • WU Yifeng1,ZHANG Yan1,LI Aiqun1,2,XU Hong1
Author information +
文章历史 +

摘要

为了进一步将隔震技术推广应用于低矮村镇建筑,设计制作了一种低成本尼龙织物叠层橡胶支座,并对其进行了竖向压缩与压剪试验。结果表明,支座的竖向刚度较叠层钢板橡胶支座明显偏小,但其竖向阻尼比可达7%;支座压剪滞回曲线饱满,残余位移小;剪应变较小时,支座因“翻滚”卷曲使其等效水平剪切刚度减小,但在大剪应变时,因橡胶材料硬化以及支座“全翻滚”变形,支座切线刚度明显增加;支座在剪应变300%时性能未见明显退化,但侧面出现小裂纹;随着剪应变增加,支座等效阻尼比在9%-13%范围内呈现先减小后增大的规律。以上结果可为此类支座的进一步研究与工程应用提供参考。
关键词:尼龙织物叠层橡胶支座;压缩试验;压剪试验;滞回曲线;阻尼比

Abstract

In order to further popularize the application of seismic isolation technology in rural buildings, a low-cost nylon fabric laminated rubber bearing was designed and produced, and the vertical compression and the compression shear test of the bearing were carried out. Results show that the vertical stiffness of the bearing is significantly lower than that of the laminated steel rubber bearing, but its vertical compression damping ratio can reach 7%;the compression-shear hysteresis curve of the bearing is full and the residual displacement is small; when the shear strain is small, the equivalent horizontal stiffness of the bearing decreases due to "rollover" deformation, but at high shear strain, the tangential stiffness of the bearing significantly increases due to the hardening of the natural rubber material and the "full rollover" deformation of the bearing; the performance of the bearing is not significantly degraded when the shear strain is 300%, but small cracks are found on the side of the bearing; as the shear strain increases, the equivalent damping ratio of the bearing first decreases and then increases in the range of 9%-13%. The above results can provide references for further research and engineering applications of this type of bearing.
Keywords: nylon fabric laminated rubber bearing; vertical compression test; compression shear test; hysteresis curve; damping ratio

关键词

尼龙织物叠层橡胶支座 / 压缩试验 / 压剪试验 / 滞回曲线 / 阻尼比

Key words

nylon fabric laminated rubber bearing / vertical compression test / compression shear test / hysteresis curve / damping ratio

引用本文

导出引用
吴宜峰1,张琰1,李爱群1,2,徐泓1. 尼龙织物叠层橡胶支座压缩与压剪性能试验研究[J]. 振动与冲击, 2022, 41(18): 150-156
WU Yifeng1,ZHANG Yan1,LI Aiqun1,2,XU Hong1. Experimental analysis on the compression and compressive shear performances of a nylon fabric laminated rubber bearing[J]. Journal of Vibration and Shock, 2022, 41(18): 150-156

参考文献

[1] 周中一.村镇砌体结构新型抗震与隔震技术研究[D]. 北京:北京工业大学,2012.
Zhou Zhongyi. Study on new base vibration isolation and anti-seismic technology of masonry structure in rural areas[D]. Beijing: Beijing University of Technology, 2012.
[2] 曹万林, 张勇波, 董宏英, 等. 村镇建筑抗震节能结构体系研究与应用[J]. 工程力学, 2015, 32(12):1-12.
Cao Wanlin, Zhang Yongbo, Dong Hongying, et al. Research and application on aseismic energy-saving structural system for rural buildings[J]. Engineering Mechanics, 2015, 32(12):1-12.
[3] 周福霖. 工程结构减震控制[M]. 北京: 地震出版社, 1997.
Zhou Fulin. Seismic control of structure seismological [M]. Beijing: Seismological Press, 1997.
[4] 陈彦江, 郭凯敏, 李勇, 等. 桥梁高阻尼隔震橡胶支座性能试验研究[J]. 振动与冲击, 2015, 34(09): 136-148.
Chen Yanjiang,Guo Kaimin,Li Yong, et al. Behavior of high damping seismic isolation rubber bearings for bridges[J]. Journal of Vibration and Shock, 2015, 34(09): 136-148.
[5] Kelly J M. Analysis of fiber-reinforced elastomeric isolators [J]. Journal of Seismology and Earthquake Engineering, 1999, 2(1): 19-34.
[6] Moon B Y, Kang G J, Kang B S, et al. Design and manufacturing of fiber reinforced elastomeric isolator for seismic isolation[J]. Journal of Materials Processing Technology, 2002, 130: 145-150.
[7] Toopchi-Nezhad H, Tait M J, Drysdale R G. Testing and modeling of square carbon fiber-reinforced elastomeric seismic isolators [J]. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 2008, 15(6): 876-900.
[8] Toopchi-Nezhad H, Tait M J, Drysdale R G. Bonded versus unbonded strip fiber reinforced elastomeric isolators: finite element analysis [J]. Composite Structures ,2011, 93(2): 850-859.
[9] Mordini A, Strauss A. An innovative earthquake isolation system using fibre reinforced rubber bearings [J]. Engineering Structures ,2008,30:2739-2751.
[10] Das A, Deb S K, Dutta A. Shake table testing of un-reinforced brick masonry building test model isolated by U-FREI [J]. Earthquake Engineering & Structural Dynamics, 2016, 45(2): 253-272.
[11] Al-Anany Y M, Moustafa M A, Tait M J. Modeling and evaluation of a seismically isolated bridge using unbonded fiber-reinforced elastomeric isolators [J]. Earthquake Spectra, 2018, 34(1): 145-168.
[12] Hedayati-Dezfuli F, Alam M S. Performance of carbon fiber-reinforced elastomeric isolators manufactured in a simplified process: experimental investigations [J]. Structural Control and Health Monitoring, 2014, 21(11):1347-1359.
[13] Karimzadeh Naghshineh A, Akyuz U, Caner A. Lateral response comparison of unbonded elastomeric bearings reinforced with carbon fiber mesh and steel [J]. Shock and Vibration, 2015,1-10.
[14] 孟庆利, 冯浩. 铅芯废旧轮胎隔震垫(LRTP)力学性能试验研究[J].土木工程学报,2018,51(01):58-67.
Meng Qingli, Feng Hao. The experimental study on mechanical behavior of Lead Recycle Tire Pads (LRTP)[J]. China Civil Engineering Journal, 2018, 51(01): 58-67.
[15] 谭平, 徐凯, 王斌, 等. 基于新型简易隔震支座的村镇建筑隔震性能研究[J]. 土木工程学报, 2013, 46(5):64-70.
Tan Ping, Xu Kai, Wang Bin, et al. Performance study of isolated rural buildings using novel simple isolators [J]. China Civil Engineering Journal, 2013, 46(5): 64-70.
[16] 谭平, 王斌, 金建敏, 等. 纤维增强工程塑料板夹层橡胶隔震支座有限元分析[J]. 振动与冲击, 2014, 33(24): 95-100.
Tan Ping, Wang Bin, Jin Jian Min, et al. Finite element analysis for a fiber-reinforced-plastic plate isolation bearing[J]. Journal of Vibration and Shock, 2014, 33(24): 95-100.
[17] 谭平, 刘晗, 徐凯, 等. 低造价工程塑料板叠层橡胶隔震支座极限性能研究[J]. 建筑结构学报, 2020, 41(06):58-64. (Tan Ping, Liu Han, Xu Kai, et al. Ultimate properties of low-cost engineering plastic plate laminated rubber bearing[J]. Journal of Building Structures, 2020, 41(06): 58-64. (in Chinese))
[18] Wu Y F, Zhang Y, Li A Q, et al. The Experimental Study on Mechanical Behavior of Conveyor Belt Rubber Bearings[J]. Applied. Sciences. 2020, 10, 4452.
[19] GB/T 528—2009 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定[S]. 北京: 中国标准出版社, 2009.
GB/T 528—2009 Rubber, vulcanized or thermoplastic- determination of tensile stress-strain properties [S]. Beijing: Standards Press of China, 2009.
[20] GB 50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
GB 50011—2010 Code for seismic design of buildings, Beijing: China Architecture & Building Press, 2010.
[21] Kelly J M. Analysis of the run-in effect in fiber-reinforced isolators under vertical load[J]. Journal of Mechanics of Materials and Structures, 2008, 3(7): 1383-1401.
[22] van Engelen N C, Konstantinidis D, Tait M J. Structural and nonstructural performance of a seismically isolated building using stable unbonded fiber-reinforced elastomeric isolators[J]. Earthquake Engineering & Structural Dynamics, 2016, 45 (3): 421-439.

PDF(1966 KB)

Accesses

Citation

Detail

段落导航
相关文章

/