一种求解非线性模态的改进Galerkin法

李诚1, 李鸿光2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 157-165.

PDF(3901 KB)
PDF(3901 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 157-165.
论文

一种求解非线性模态的改进Galerkin法

  • 李诚1, 李鸿光2
作者信息 +

Improved Galerkin method for computing nonlinear normal modes

  • LI Cheng1,LI Hongguang2
Author information +
文章历史 +

摘要

提出了一种改进的 Galerkin方法以计算非线性系统的非线性模态在不变流形定义下的解曲面。在已有的两种非线性模态Galerkin解法的基础上,该方法在假设函数中引入了有限元形式的展开式,并利用该问题中特定的Jacobian矩阵的稀疏性加速待求系数的非线性代数方程组的求解。以一种非线性双级隔振器为例,采用了这三种方法计算其主共振对应的非线性模态,并将解进行了比较。本方法在求解域较大时,仍能获得较为准确的解。本方法进一步与已有的Galerkin法进行了综合,在保证求解精度的基础上加速了计算。
关键词:非线性模态;不变流形;Galekin法;稀疏雅可比矩阵

Abstract

An improved Galerkin method is proposed to solve the nonlinear normal mode of the nonlinear system under the definition of invariant manifold. On the basis of two existing Galerkin methods for the nonlinear normal mode solution, this method introduces the finite element form of shape functions into the solution expansions, and applies a corresponding strategy for the approximation of the specific sparse Jacobian matrix to accelerate the calculation of the expansion coefficients. A nonlinear two-stage vibration isolator is considered. Its nonlinear normal mode corresponding to the primary resonance is solved, and the solutions obtained by these three methods are compared. The proposed method can yield more accurate solutions in large domains. Then this method is integrated with the existing Galerkin method, and the calculation is further accelerated to obtain an accurate solution.
Key words: nonlinear normal mode; invariant manifold; Galerkin method; sparse Jacobian matrix

关键词

非线性模态 / 不变流形 / Galekin法 / 稀疏雅可比矩阵

Key words

nonlinear normal mode / invariant manifold / Galerkin method / sparse Jacobian matrix

引用本文

导出引用
李诚1, 李鸿光2. 一种求解非线性模态的改进Galerkin法[J]. 振动与冲击, 2022, 41(18): 157-165
LI Cheng1,LI Hongguang2. Improved Galerkin method for computing nonlinear normal modes[J]. Journal of Vibration and Shock, 2022, 41(18): 157-165

参考文献

[1] Rosenberg R.M. Normal modes of nonlinear dual-mode systems [J]. Journal of Applied Mechanics, 1960, 27(2): 263-268.
[2] Shaw S.W., Pierre C. Non-linear normal modes and invariant manifolds [J]. Journal of Sound and Vibration, 1991, 150(1): 170-173.
[3] 吴志强,陈予恕,毕勤胜.非线性模态的分类与新的求解方法[J].力学学报,1996,28(3):298-307.
WU Zhiqiang, CHEN Yushu, BI Qinsheng. Classification of nonlinear normal modes and their new constructive method [J]. Acta Mechanica Sinica, 1996, 28(3): 298-307.
[4] 李欣业,陈予恕,吴志强,等.多自由度内共振系统非线性模态的分岔特性[J].力学学报,2002,34(3):401-407.
LI Xinye, CHEN Yushu, WU Zhiqiang, et al. Bifurcation of nonlinear normal modes of multi-degree-of-freedom systems with internal resonance [J]. Acta Mechanica Sinica, 2002, 34(3): 401-407.
[5] 徐鉴,陆启韶,黄克累.两自由度非对称三次系统非奇异时的非线性模态及叠加性[J].应用数学和力学,1998,19(12): 1077-1086.
XU Jian, LU Qishao, HUANG Kelei. Nonlinear normal modes and their superposition in a two degrees of freedom asymmetric system with cubic nonlinearities [J]. Applied Mathematics and Mechanics, 1998, 19(12): 1077-1086.
[6] Cirillo G.I., Mauroy A., Renson L., et al. A spectral characterization of nonlinear normal modes [J]. Journal of Sound and Vibration, 2016, 377: 284-301.
[7] Nayfeh A.H., Nayfeh S.A. On nonlinear modes of continuous systems [J]. Journal of Vibration and Acoustics, 1994, 116(1): 129-136.
[8] Lacarbonara W., Rega G., Nayfeh A.H. Resonant non-linear normal modes, part I: analytical treatment for structural one-dimensional systems [J]. International Journal of Non-Linear Mechanics, 2003, 38(6): 851-872.
[9] Wang F., Bajaj A.K. Nonlinear normal modes in multi-mode models of an inertially coupled elastic structure [J]. Nonlinear Dynamics, 2007, 47(1): 25-47.
[10] King M.E., Vakakis A.F. An energy-based approach to computing resonant nonlinear normal modes [J]. Journal of Applied Mechanics, 1996, 63(3): 810-819.
[11] Jezequel L., Lamarque C.H. Analysis of non-linear dynamical systems by the normal form theory [J]. Journal of Sound and Vibration, 1991, 149(3): 429-459.
[12] Nayfeh A.H. On direct methods for constructing nonlinear normal modes of continuous systems [J]. Journal of Vibration and Control, 1995, 1(4): 389-430.
[13] Touzé C., Amabili M. Nonlinear normal modes for damped geometrically nonlinear systems: application to reduced-order modelling of harmonically forced structures [J]. Journal of Sound and Vibration, 2006, 298(4): 958-981.
[14] Shaw S.W., Pierre C., Pesheck E. Modal analysis-based reduced-order models for nonlinear structures - an invariant manifold approach [J]. The Shock and Vibration Digest, 1999, 31(1): 3-16.
[15] Pesheck E., Pierre C., Shaw S.W. Model reduction of a nonlinear rotating beam through nonlinear normal modes [J]. Journal of Vibration and Acoustics, 2002, 124(2): 229-236.
[16] Pesheck E., Pierre C., Shaw S.W. A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds [J], Journal of Sound and Vibration, 2002, 249(5): 971-993.
[17] Peeters M., Viguié R., Sérandour G., et al. Nonlinear normal modes, part II: Toward a practical computation using numerical continuation techniques [J]. Mechanical Systems and Signal Processing, 2009, 23(1): 195-216.
[18] Sombroek C., Tiso P., Renson L., Kerschen G. Numerical computation of nonlinear normal modes in a modal derivative subspace [J]. Computers & Structures, 2018, 195: 34-46.
[19] Vakakis A.F., Manevitch L.I., Mikhlin Y.V., et al. Normal Modes and Localization in Nonlinear Systems [M]. Wiley Series in Nonlinear Science, Wiley, New York, 1996.
[20] Kerschen G., Peeters M., Golinval J. C., et al. Nonlinear normal modes, Part I: A useful framework for the structural dynamicist [J]. Mechanical Systems and Signal Processing, 2009, 23(1): 170-194.
[21] Powell M.J.D. Numerical Methods for Nonlinear Algebraic Equations [M]. London: Gordon and Breach, 1970.
[22] 陆泽琦,陈立群.非线性被动隔振的若干进展 [J].力学学报,2017,49(3):550-564.
LU Zeqi, CHEN Liqun. Some recent progresses in nonlinear passive isolations of vibrations [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 550-564.
[23] Carrella A., Brennan M.J., Waters T.P., et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness [J]. International Journal of Mechanical Sciences, 2012, Volume 55(1): 22-29.

PDF(3901 KB)

327

Accesses

0

Citation

Detail

段落导航
相关文章

/