基于代理模型技术的玻璃纤维复合装甲抗弹性能多目标优化设计

王威,胡鹏程,张攀,刘均,程远胜

振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 16-24.

PDF(1234 KB)
PDF(1234 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 16-24.
论文

基于代理模型技术的玻璃纤维复合装甲抗弹性能多目标优化设计

  • 王威,胡鹏程,张攀,刘均,程远胜
作者信息 +

Multi-objective optimization of the ballistic resistance of a glass fiber reinforced composite armor based on a surrogate model

  • WANG Wei,HU Pengcheng,ZHANG Pan,LIU Jun,CHENG Yuansheng
Author information +
文章历史 +

摘要

针对一种由玻璃纤维复合材料和高强钢组成的复合装甲结构,开展其在圆柱形弹体侵彻下弹道行为研究。基于验证后的数值模型,采用Kriging代理模型技术,建立了复合装甲结构抗弹性能快速预报代理模型,检验了代理模型的预报精度,并开展了变量相关性分析。建立了玻璃纤维复合装甲抗弹性能多目标优化设计数学模型,采用NSGA-Ⅱ多目标遗传算法,获得了复合装甲结构多目标优化设计帕累托前沿。结果表明,弹道极限速度与芯层厚度的线性相关性最强,与后置面板厚度的线性相关性最弱;靶板面密度与芯层厚度的线性相关性最强,与前后面板厚度的线性相关性相等。针对典型复合装甲结构初始设计方案,通过开展多目标优化设计,优化方案能够在相同抗弹性能的前提下使面密度降低15.64%,或者在相同面密度水平的前提下使弹道极限速度提高14.75%。
关键词:复合装甲;玻璃纤维增强材料;数值仿真;代理模型;多目标优化

Abstract

Multi-objective optimization of ballistic resistance of glass fiber reinforced composite armor based on surrogate model
Wei Wang 1   Pengcheng Hu 1   Pan Zhang 1   Jun Liu 1   Yuansheng Cheng 1
(1. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074)
Abstract: The ballistic behavior of a novel composite armor consisting of high strength steel panels and glass fiber reinforced polymer (GFRP) core is investigated numerically in present study. Based on the verified numerical model, a surrogate model with good accuracy is constructed to rapidly predict the ballistic performance of the composite armor using the Kriging technique. A correlation analysis among the thickness of each layer, the areal density and the ballistic limit is conducted. Finally, a mathematical model is established for the multi-objective optimization design of the composite armor. The correlated Pareto front of the composite armor is obtained using the NSGA-Ⅱ multi-objective genetic algorithm. The results show that the ballistic limit has the strongest correlation with the core thickness and the weakest correlation with the rear panel thickness. The areal density has the strongest correlation with the core thickness and the equal correlation with two face sheets. Through the multi-objective optimization design, an initial design of composite armor gains 15.64% reduction of the areal density or 14.75% increase of the ballistic limit with the other index keeping the same level.
Key words: composite armor; glass fiber reinforced polymer (GFRP); numerical simulations; surrogate model; multi-objective optimization (MDO)

关键词

复合装甲 / 玻璃纤维增强材料 / 数值仿真 / 代理模型 / 多目标优化

Key words

composite armor / glass fiber reinforced polymer (GFRP) / numerical simulations / surrogate model / multi-objective optimization (MDO)

引用本文

导出引用
王威,胡鹏程,张攀,刘均,程远胜. 基于代理模型技术的玻璃纤维复合装甲抗弹性能多目标优化设计[J]. 振动与冲击, 2022, 41(18): 16-24
WANG Wei,HU Pengcheng,ZHANG Pan,LIU Jun,CHENG Yuansheng. Multi-objective optimization of the ballistic resistance of a glass fiber reinforced composite armor based on a surrogate model[J]. Journal of Vibration and Shock, 2022, 41(18): 16-24

参考文献

[1] 王晓强, 朱  锡, 梅志远. 纤维增强复合材料抗侵彻研究综述[J]. 玻璃钢/复合材料, 2008, (05): 47-56.
Xiaoqiang W, Xi Z H U, Zhiyuan M E I. THE DEVELOPMENT OF FIBER-REINFORCED COMPOSITES UNDER BALLISTIC IMPACT[J]. Fiber Reinforced Plastics/Composites, 2008, (5): 47-56.
[2] 刘伟庆, 方  海, 方  园. 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40(04): 1-16.
LIU Weiqing,FANG Hai,FANG Yuan. Research progress of fiber-reinforced composites and structures [J].
Journal of Building Structures, 2019, 40(4): 1-16.
[3] 宋传江, 王  虎. 玻璃纤维增强复合材料工程化应用进展[J]. 中国塑料, 2015, 29(03): 9-15.
Song C, Wang H. Engineering Application Research of Glass Fiber Reinforced Composite Materials[J]. China Plastics, 2015, 29(3): 9-15.
[4] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms – A review on textiles and fibre-reinforced composites impact responses[J]. Composite Structures, 2019, 223.
[5] Zhikharev M V, Sapozhnikov S B. Two-scale modeling of high-velocity fragment GFRP penetration for assessment of ballistic limit[J]. International Journal of Impact Engineering, 2017, 101: 42-48.
[6] 李  典, 侯海量, 朱  锡, 等. 舰船装甲防护结构抗弹道冲击的研究进展[J]. 中国造船, 2018, 59(01): 237-250.
Li D, Hou H, Zhu X, et al. Review on Ballistic Impact Resistance of Ship Armor Protection Structure[J]. Shipbuilding of China, 2018, 59(1): 237-250.
[7] Hoo Fatt M S, Sirivolu D. A wave propagation model for the high velocity impact response of a composite sandwich panel[J]. International Journal of Impact Engineering, 2010, 37(2): 117-130.
[8] 徐豫新, 戴文喜, 王树山, 等. 纤维增强复合材料三明治板破片穿甲数值仿真[J]. 振动与冲击, 2014, 33(02): 134-140.
Xu Y, Dai W, Wang S, et al. Numerical simulation on fragment armor-piercing against sandwich plate with fiber reinforced composite cores[J]. Journal of Vibration and Shock, 2014, 33(2): 134-140.
[9] 李思宇, 李晓彬, 赵鹏铎, 等. GFRP复合三明治板在高速弹体冲击下的弹道极限预测[J]. 高压物理学报, 2018, 32(01): 119-131.
Li S, Li X, Zhao P, et al. Prediction of Ballistic Limit of Composite GFRP Sandwich Panels under Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 119-131.
[10] Zhao Y, Yang Z, Yu T, et al. Mechanical properties and energy absorption capabilities of aluminium foam sandwich structure subjected to low-velocity impact[J]. Construction and Building Materials, 2021, 273: 121996.
[11] 杨伟苓, 钟  涛, 武海玲, 等. 陶瓷-钛合金复合结构优化设计与试验研究[J]. 兵器材料科学与工程, 2013, 36(05): 55-58.
Yang W, Zhong T, Wu H, et al. Optimization design and test of ceramic-Ti alloy composite structure[J]. Ordnance Material Science and Engineering, 2013, 36(5): 55-58.
[12] Hetherington J G. The optimization of two component composite armours[J]. International Journal of Impact Engineering, 1992, 12(3): 409-414.
[13] Fawaz Z, Behdinan K, Xu Y. Optimum design of two-component composite armours against high-speed impact[J]. Composite Structures, 2006, 73(3): 253-262.
[14] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
Han Z. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225.
[15] Qi C, Yang S, Yang L-J, et al. Blast resistance and multi-objective optimization of aluminum foam-cored sandwich panels[J]. Composite Structures, 2013, 105: 45-57.
[16] Chen Y, Fu K, Hou S, et al. Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings[J]. Composites Part B: Engineering, 2018, 142: 159-170.
[17] Cai S, Zhang P, Dai W, et al. Multi-objective optimization for designing metallic corrugated core sandwich panels under air blast loading[J]. Journal of Sandwich Structures & Materials, 2019.
[18] Silva M A G, Cismaşiu C, Chiorean C G. Numerical simulation of ballistic impact on composite laminates[J]. International Journal of Impact Engineering, 2005, 31(3): 289-306.
[19] Ansari M M, Chakrabarti A, Iqbal M A. An experimental and finite element investigation of the ballistic performance of laminated GFRP composite target[J]. Composites Part B: Engineering, 2017, 125: 211-226.
[20] Ansari M M, Chakrabarti A. Impact behavior of FRP composite plate under low to hyper velocity impact[J]. Composites Part B: Engineering, 2016, 95: 462-474

PDF(1234 KB)

421

Accesses

0

Citation

Detail

段落导航
相关文章

/