提升作动器效率是风洞模型主动减振系统结构设计的首要目标。基于风洞试验、地面模态试验及有限元分析,提取了高速风洞模型尾支撑结构振动特征及振动控制过程中各部件的运动、变形模式,建立了简化的动力学-控制耦合模型,发展了适用于主动减振结构设计的作动器效率表征方法。以双弹性铰链形式的典型主动减振结构为对象,从一组标称设计参数出发,研究作动器效率对弹性铰链的几何、位置及刚度参数敏感性特征,探索提升作动器效率的有效途径。数值仿真结果表明,弹性铰链的几何参数和位置参数对主动减振系统作动器效率影响均呈现非线性、非单调特征。而采用弹性铰链的拉伸刚度和弯曲刚度作为变量,获得的影响规律在主要设计域中呈现近似线性特征,便于进行弹性铰链改进设计。
关键词:风洞试验;模型振动;主动振动控制;弹性铰链;作动器效率
Abstract
Improving actuator efficiency was one of the primary objectives of the active damper structural design. Considering the active damper for typical high-speed wind tunnel model, the characteristics of the dynamic system were obtained, and the deformation pattern of each component during the vibration control were extracted based on finite element method and modal experiments. Then, a simplified model was established for the dynamic system using control voltage of the piezoelectric stacks as the input, and a quantification method for the actuator efficiency was developed for structure design. Finally, regarding to a baseline active damper with double-hinge structure, the effects of the variations of the flexible hinges parameters on the actuator efficiency were studied, and the strategies for improving it were also obtained. The numerical simulation results show that the relationships between the actuator efficiency and the geometric parameters of the flexible hinges are all nonlinear and non-monotonic. However, when using the stiffness of the flexible hinges as design variables instead, approximate linear relationships can be achieved in the main design domain, which can provide easier way to design them.
Key words: wind tunnel test; model vibration; active vibration c
关键词
风洞试验 /
模型振动 /
主动振动控制 /
弹性铰链 /
作动器效率
{{custom_keyword}} /
Key words
wind tunnel test /
model vibration /
active vibration c
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]EDWARDS J W. National transonic facility model and tunnel vibrations[J]. Journal of Aircraft, 2009, 46(1): 46-52.
[2] WIMMEL R. Active electronic equipment DOF suspensionfor high loads as vibration, shock and quasi static forces[C]//Proceeding of the European Conference on Spacecraft Structures,Materials and Mechanical Testing. Netherlands: European Space Agency, 2005:1-8.
[3] YOUNG C P, BUEHRLE R D, BALAKRISHNA S, etal.Effects of vibration on inertial wind-tunnel model attitude measurement devices: NASA TM-109083[R]. Hampton: NASA, 1994.
[4]BUEHRLE R D, YOUNG C P. Modal Correction Method for Dynamically Induced Errors in Wind Tunnel Model Attitude Measurements: NASA TM-111560[R]. Hampton: NASA, 1995.
[5] 叶正寅,谢飞. 弹性振动对翼型失速迎角附近流场的影响[J]. 航空学报, 2006, 27(6): 1028-1032.
YE Z Y, XIE F. The effects of elastic vibration on the flow field near stall-incidence of the airfoil[J]. Acta Aeronautica ET Astronautica Sinica, 2006, 27(6): 1028-1032.
[6] 叶正寅,解亚军,武洁. 模型振动对翼型流场和气动性能的影响[J]. 工程力学, 2009, 26(4):240-245.
YE Z Y, XIE Y J, WU J. The effects of wind-tunnel model vibration on flow field and aerodynamics of an airfoil[J]. Engineering Mechanics, 2009, 26(4):240-245.
[7] IGOE W B, CAPONE F T. Reduction of Wind Tunnel Model Vibrations By means of a Tuned Damped Vibration Absorber installed in a model:NASA TMX-1606[R]. Hampton: NASA, 1968.
[8] BALAKRISHNA S, BUTLER D H,WHITE R, et al.Active damping of sting vibrations in transonic wind tunnel testing[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 1-15.
[9] BALAKRISHNA S, BUTLER D H, ACHESONM J, etal.Design and performance of an active sting damper for the NASA common research models[C]//49th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2011: 1-9.
[10] RIVERS M B, BALAKRISHNA S. NASA common research model test envelope extension with active sting damping at NTF[C]//32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014: 1-14.
[11] FEHREN H, GNAUERT H, WIMMEL R. Validation testing with the active dampingsystem in the European transonic wind tunnel[C]//Proceedingsof 39th AIAA Aerospace Sciences Meeting. Reston: AIAA, 1990.
[12] QUEST J. ETW - High quality test performance in cryogenic environment[C]//21st AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2000.
[13] SCHIMANSKI D, QUEST J. Tools and techniques for high Reynolds number testing status and recent improvements at ETW[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
[14] SCHIMANSKI D, QUEST J. Flight Reynolds Number Testing at ETW: AIAA-2009-0422[R]. Reston: AIAA, 2009.
[15] 陈卫东,邵敏强,杨兴华,等. 跨声速风洞测力模型主动减振系统的试验研究[J].振动工程学报, 2007, 20(1): 91-96.
CHEN W D, SHAO M Q, YANG X H, et al. Experimental evaluation of an active vibrationcontrol system for wind tunnel aerodynamic models[J]. Journal of Vibration Engineering, 2007, 20(1): 91-96.
[16] 佘重禧,陈卫东,邵敏强. 跨声速风洞测力模型的降阶及H∞减振控制[J]. 噪声与振动控制, 2014, 34(1):67-71.
SHE C X, CHEN W D, SHAO M Q. Model reduction and active vibration suppression of a wind tunnel test model by H∞control[J]. Noise and Vibration Control, 2014, 34(1):67-71.
[17] LIU W, ZHOU M D, WEN Z Q, et al. An active damping vibration control systemfor wind tunnel models[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2109-2120.
[18] LIU W, LIU W X, ZHOU M D, et al. An active vibration control method based on energy-fuzzy for cantilever structures excited by aerodynamic loads[J/OL]. Chinese Journal of Aeronautics, (2020-05-15)[2021-03-12].https://doi.org/10.1016/j.cja.2020.07.001
[19] 余立,杨兴华,寇西平,等. 跨声速风洞模型主动减振系统试验研究[J]. 南京航空航天大学学报, 2019, 51(4):526-533.
YU L, YANG X H, KOU X P, et al. Experiment on active vibration reduction system for transonic wind tunnel model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(4):526-533.
[20] SHEN X, DAI Y K, Chen M X, et al. Active vibration control of the sting used in wind tunnel: comparison of three control algorithms[J/OL]. Shock and Vibration(2018-09-20)[2020-09-27]. https://doi.org/10.1155/2018/1905049.
[21] 杨智春,王巍,谷迎松,等. 一种弯曲型压电堆作动器的设计及在振动控制中的应用[J]. 振动与冲击, 2009, 28(9):130-134.
YANG Z C, WANG W, GU Y S, et al. Smart structure vibration control using a new bending type of piezoelectric stack actuator[J]. Journal of Vibration and Shock, 2009, 28(9):130-134.
[22] 曾开春,寇西平,杨兴华,等.跨声速风洞试验模型主动减振结构优化设计[J]. 航空学报, 2022, 43(2): 297-308.
ZENG Kaichun,KOU Xiping,YANG Xinghua,et al.Optimization of active vibration damping structure for transonic wind tunnel test model[J].Acta Aeronautica ET Astronautica Sinica, 2022, 43(2): 297-308.
[23] 梁力,杨智春,欧阳炎,等. 垂尾抖振主动控制的压电作动器布局优化[J]. 航空学报, 2016, 37(10):3035-3043.
LIANG L, YANG Z C, OUYANG Y, et al. Optimization of piezoelectric actuator configuration on a vertical tail for buffeting control[J]. Acta Aeronautica ET Astronautica Sinica, 2016, 37(10): 3035-3043.
[24] HAMDAN A M A, NAYFEH A H. Measures of modal controllability and observability for firstand second-order linear systems[J]. Journal of Guidance, Control, and Dynamics, 1989, 12(3): 421-428.
[25] 潘继,陈龙详,蔡国平,等. 柔性板压电作动器的优化位置与主动控制实验研究[J]. 振动与冲击, 2010, 29(2):117-120.
PAN J, CHEN L X, CAI G P, et al. Optimal positioning of PZT actuators and active control testing for a flexible plate[J]. Journal of Vibration and Shock, 2010, 29(2):117-120.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}