船舶横摇系统的多稳态动力学及其控制

赵文浩,张文,李高磊,乐源

振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 192-196.

PDF(1527 KB)
PDF(1527 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 192-196.
论文

船舶横摇系统的多稳态动力学及其控制

  • 赵文浩,张文,李高磊,乐源
作者信息 +

Multistable dynamics and control of the ship’s rolling system

  • ZHAO Wenhao,ZHANG Wen,LI Gaolei,YUE Yuan
Author information +
文章历史 +

摘要

考虑一类非线性船舶横摇动力学模型,采用数值方法求解其运动微分方程,通过分岔图、相轨线图和吸引域揭示了系统的多稳态动力学。利用间歇控制方法,实现系统在不同的稳态之间切换。进一步考虑间歇控制力的强度,研究约束控制力对控制效果的影响。含约束的间歇控制方法,在限制了最大控制信号的情况下,先将当前系统的轨迹控制到一个暂态的轨迹上,再通过间歇控制进行不断的调整,使其最终稳定到期望周期解的轨迹上。数值研究结果表明:含约束的间歇性控制方法的整个控制过程相对平缓,同时又可以控制单次输入信号的强度大小,更适用于实际的多稳态动力系统。
关键词:船舶横摇系统;多稳态动力学;吸引域;间歇控制方法

Abstract

Considering a class of ship’s nonlinear rolling dynamics model, numerical methods are used to solve the established differential equations of motion, and multistable dynamics are uncovered by bifurcation diagram, phase trajectory diagram and attraction basins research system. Intermittent controlling method is used to enable the system to switch between different steady states. The strength of the intermittent control force is further considered, and the effect of limited control force on the efficiency of the control effect is investigate. The intermittent controlling method with constraints, in the case of limiting the maximum control signal, controls the current trajectory to a transient one first, then adjusts continuously through intermittent controlling to stabilize the dynamics to the trajectory of the desired periodic solution. The numerical results show that the whole control process of the intermittent controlling method with constraints is relatively flat, and at the same time it can control the strength of a single input signal, which is more suitable for the practical dynamics system.
Key words: Ship’s rolling system; Multistable dynamics; Basins of attraction; Intermittent controlling method

关键词

船舶横摇系统 / 多稳态动力学 / 吸引域 / 间歇控制方法

Key words

Ship’s rolling system / Multistable dynamics / Basins of attraction / Intermittent controlling method

引用本文

导出引用
赵文浩,张文,李高磊,乐源. 船舶横摇系统的多稳态动力学及其控制[J]. 振动与冲击, 2022, 41(18): 192-196
ZHAO Wenhao,ZHANG Wen,LI Gaolei,YUE Yuan. Multistable dynamics and control of the ship’s rolling system[J]. Journal of Vibration and Shock, 2022, 41(18): 192-196

参考文献

[1] 黄羽,徐鉴. 一类平面自治非线性时滞控制系统的多稳态和混沌[J]. 力学季刊, 2005(04): 669-672.
HUANG Yu, XU Jian. Multiple state-steady motion and chaos in a class of planar autonomus nonlinear system with delayed control[J]. Chinese Quarterly of Mechanics, 2005(04): 669-672.
[2] Chen S, Schell M. Excitability and multistability in the electrochemical oxidation of primary alcohols[J]. Electrochimica Acta, 2000, 45(19): 3069-3080.
[3] 冯剑丰,王洪礼,朱琳. 生态系统多稳态研究进展[J]. 生态环境学报, 2009, 18(04): 1553-1559.
FENG Jian-feng, WANG Hong-li, ZHU Lin, Review on alternative stable states in ecosystems[J]. Ecology and Environmental Sciences, 2009, 18(04): 1553-1559.
[4] Naimzada A, Pireddu M. Endogenous evolution of heterogeneous consumers preferences: Multistability and coexistence between groups[J]. Economics Letters, 2016, 142(May): 22-26.
[5] Bathiany S, Claussen M, Fraedrich K. Implications of climate variability for the detection of multiple equilibria and for rapid transitions in the atmosphere-vegetation system[J]. Climate Dynamics, 2012, 38(9): 1775-1790.
[6] Pisarchik A N, Feudel U. Control of multistability[J]. Physics Reports, 2014, 540(4): 167-218.
[7] Halse C K, Eddie Wilson R, di Bernardo M, et al. Coexisting solutions and bifurcations in mechanical oscillators with backlash[J]. Journal of Sound and Vibration, 2007, 305(4): 854-885.
[8] 张惠,丁旺才,李险峰. 分段光滑碰撞振动系统吸引域结构变化机理研究[J]. 振动与冲击, 2019, 38(18): 141-147.
ZHANG Hui, DING Wang-cai, LI Xian-feng. Structure change mechanism of the attractor basin in a piecewise-smooth vibro-impact system[J]. Journal of Vibration and Shock, 2019, 38(18): 141-147.
[9] Wiggers V, Rech P C. Multistability and organization of periodicity in a Van der Pol–Duffing oscillator[J]. Chaos Solitons & Fractals, 2017, 103: 632-637.
[10] 颜科鹏,陈力奋. 含非线性柔性约束梁结构的多稳态响应实验研究[J]. 复旦学报(自然科学版), 2015, 54(03): 356-364.
YAN Ke-peng, CHEN Li-fen. Experimental study of multi-stable vibration characteristics of nonlinear beams with flexible constrains[J]. Journal of Fudan University (Natural Science), 2015, 54(03): 356-364.
[11] Goswami B K, Pisarchik A N. Controlling multistability by small periodic perturbation[J]. International Journal of Bifurcation and Chaos, 2008, 18(06): 1645-1673.
[12] 柴凯,楼京俊,朱石坚,等. 两自由度非线性隔振系统的吸引子迁移控制[J]. 振动与冲击, 2018, 37(22): 15-21.
CHAI Kai, LOU Jing-jun, ZHU Shi-jian, et al. Attractor migration control of a two-degree-of-freedom nonlinear vibration isolation system[J]. Journal of Vibration and Shock, 2018, 37(22): 15-21.
[13] Liu Y, Páez Chávez J. Controlling coexisting attractors of an impacting system via linear augmentation[J]. Physica D Nonlinear Phenomena, 2017, 348: 1-11.
[14] Liu Y, Wiercigroch M, Ing J, et al. Intermittent control of coexisting attractors.[J]. Philosophical transactions. Series A, Mathematical, Physical, and Engineering Sciences,2013, 371(1993): 20120428.
[15] 欧阳茹荃,朱继懋. 船舶非线性横摇运动与混沌[J]. 中国造船, 1999(01): 21-28.
OUYANG Ru-quan, ZHU Ji-mao. Nonlinear oscillations and chaos of ship rolling motion[J]. Shipbuilding of China, 1999(01): 21-28.
[16] 胡开业,丁勇,王宏伟,等. 船舶非线性横摇运动的分岔控制[J]. 哈尔滨工程大学学报, 2013, 34(09): 1131-1134.
HU Kai-ye, DING Yong, WANG Hong-wei, et al. Research on bifurcation control methods for ship’s nonlinear rolling[J]. Journal of Harbin Engineering University, 2013, 34(09): 1131-1134.
[17] Nayfeh A H, Khdeir A A. Nonlinear rolling of ships in regular beam seas[J]. International Shipbuilding Progress, 1986, 33(379): 40-49.
[18] Cardo A, Francescutto A, Nabergoj R. Subharmonic oscillations in nonlinear rolling[J]. Ocean Engineering, 1984, 11(6): 663-669.

PDF(1527 KB)

356

Accesses

0

Citation

Detail

段落导航
相关文章

/