参数不确定性内声场分析的封闭区间有限元方法

向育佳,史治宇,冯雪磊

振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 25-32.

PDF(1463 KB)
PDF(1463 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 25-32.
论文

参数不确定性内声场分析的封闭区间有限元方法

  • 向育佳,史治宇,冯雪磊
作者信息 +

Enclosing interval finite-element method for the analysis of the interior-acoustic field with parametric uncertainty

  • XIANG Yujia,SHI Zhiyu,FENG Xuelei
Author information +
文章历史 +

摘要

针对含有不确定但有界参数的内声场预测问题,主要的区间建模方法为逐单元的区间有限元法(EBE-IFEM)和区间摄动有限元法(IPFEM)。但由于IPFEM在级数展开时存在非保守近似的缺陷,EBE-IFEM在利用拉格朗日乘子法(Lagrange multiplier method)来约束扩增的节点自由度时增加了内存消耗并降低了迭代计算效率,现有方法很难兼备保守的结果和高的计算效率。为此,本文提出了一种新的封闭区间有限元方法(Enclosing-IFEM),结合“混合节点-单元”(MNE)的组装策略来缩减自由度,该方法能够在满足结果保守性的前提下,提高求解效率。而且,Enclosing-IFEM的区间动力学方程可以直接转化为“并矢积”形式(Dyadic product formula),解决了基于Sherrman-Morrison-Woodbury级数的区间摄动有限元法(SMW-IPFEM)的动力学拓展问题。最后,将蒙特卡罗(Monte-Carlo)方法以及它区间有限元方法作为参考解,通过两个数值算例验证了Enclosing-IFEM的计算精度和效率。
关键词:封闭区间有限元方法;S-M-W级数;不确定性声场分析;不确定但有界参数

Abstract

For the prediction of interior acoustic field with uncertain-but-bounded parameters, the main interval modeling approaches are element-by-element based interval finite-element method (EBE-IFEM) and interval perturbation finite-element method (IPFEM). However, the non-conservative approximation of IPFEM due to neglecting the high-order terms in series expansion, and the increasing memory consumption and low iterative computational efficiency of EBE-IFEM due to the constraints of the expanded nodal freedoms by the Lagrange multiplier method, none of present methods can cope with both the conservative results and high computational efficiency. Therefore, based on the “mixed-nodal-element” assembly way to decrease the freedoms, a new method called enclosing interval finite-element method (Enclosing-IFEM) is proposed to achieve goals in both well conservativeness and high time-efficiency. Moreover, as the interval dynamic equation of the Enclosing-IFEM can be transformed into the dyadic product formula directly, the problem of Sherrman-Morrison-Woodbury-series based IPFEM for dynamic analysis is solved. Finally, taking the results of Monte-Carlo method and other interval finite-element methods as the cross references, both efficiency and accuracy of the Enclosing-IFEM is verified through the two numerical examples.
Key words: Enclosing interval finite-element method; Sherrman-Morrison-Woodbury series; Uncertain acoustic field analysis; Uncertain-but-bounded parameters

关键词

封闭区间有限元方法 / S-M-W级数 / 不确定性声场分析 / 不确定但有界参数

Key words

Enclosing interval finite-element method / Sherrman-Morrison-Woodbury series / Uncertain acoustic field analysis / Uncertain-but-bounded parameters

引用本文

导出引用
向育佳,史治宇,冯雪磊. 参数不确定性内声场分析的封闭区间有限元方法[J]. 振动与冲击, 2022, 41(18): 25-32
XIANG Yujia,SHI Zhiyu,FENG Xuelei. Enclosing interval finite-element method for the analysis of the interior-acoustic field with parametric uncertainty[J]. Journal of Vibration and Shock, 2022, 41(18): 25-32

参考文献

[1] 季振林. 消声器声学理论与设计[M]. 科学出版社, 2015.
Zhenlin Ji, Acoustic theory and design of muffler[M]. Science Press, 2015.
[2] Chen Q, Fei Q, Wu S, et al. Statistical energy analysis for the vibro-acoustic system with interval parameters[J]. Journal of Aircraft, 2019, 56(5): 1869-1879.
[3] Moore R E. Methods and applications of interval analysis[M]. Society for Industrial and Applied Mathematics, 1979.
[4] Muhanna R L, Rao M V R, Mullen R L. Advances in interval finite element modelling of structures[J]. Life Cycle Reliability and Safety Engineering, 2013, 2(3): 15-22.
[5] Köylüoğlu H U. Interval algebra to deal with pattern loading and structural uncertainties[C]//Proc. ASCE. 1995, 121(11): 1149-1158.
[6] Faes M, Moens D. Recent trends in the modeling and quantification of non-probabilistic uncertainty[J]. Archives of Computational Methods in Engineering, 2020, 27(3): 633-671.
[7] Xia B, Yu D. Interval analysis of acoustic field with uncertain-but-bounded parameters[J]. Computers & Structures, 2012, 112: 235-244.
[8] 陈宁, 于德介, 吕辉,等. 基于有限元法的模糊参数二维声场数值分析[J]. 工程力学, 2014(12):8.
Chen Ning, Yu Dejie, Lv Hui, Xia Baizhan. Numerical analysis of 2D acoustic field with fuzzy parameters based on finite element method[J]. Engineering Mechanics, 2014(12):8.
[9] 尹盛文, 于德介, 夏百战. 不确定声场分析的二阶区间摄动有限元法[J]. 声学学报, 2015, 40(5):7.
Yin Shengwen, Yu Dejie, Xia Baizhan. Second-order interval perturbation finite element method for the analysis of the acoustic field with uncertain parameters[J]. ACTA ACUSTICA, 2015, 40(5):7.
[10] 尹盛文, 于德介, 夏百战. 不确定声场分析的区间矩阵分解摄动有限元法[J]. 机械工程学报, 2015, 51(19):8.
Yin Shengwen, Yu Dejie, Xia Baizhan. Decomposed interval matrix perturbation finite element method for the response analysis of the acoustic field with uncertain parameters[J]. Journal of Mechanical Engineering, 2015, 51(19):8.
[11] Wei T, Li F, Meng G, et al. Bounds for uncertain structural problems with large-range interval parameters[J]. Archive of Applied Mechanics, 2021, 91(3): 1157-1177.
[12] Xiang Y, Shi Z. Interval Analysis of Interior Acoustic Field with Element-By-Element-Based Interval Finite-Element Method[J]. Journal of Engineering Mechanics, 2021, 147(11): 04021085.
[13] Impollonia N. A method to derive approximate explicit solutions for structural mechanics problems[J]. International journal of solids and structures, 2006, 43(22-23): 7082-7098.
[14] Impollonia N, Muscolino G. Interval analysis of structures with uncertain-but-bounded axial stiffness[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(21-22): 1945-1962.
[15] Xia B, Yu D. Modified sub-interval perturbation finite element method for 2D acoustic field prediction with large uncertain-but-bounded parameters[J]. Journal of Sound and Vibration, 2012, 331(16): 3774-3790.
[16] 牛明涛, 李昌盛, 陈利源. 含区间参数的结构-声耦合系统摄动分析方法[J]. 振动与冲击, 2015, 34(10):5.
Niu Ming-tao, Li Chang-sheng, Chen Li-yuan. Perturbation methods for structural-acoustic coupled systems with interval parameters[J]. Journal of Vibration and Shock, 2015, 34(10):5.
[17] Muscolino G, Sofi A. Bounds for the stationary stochastic response of truss structures with uncertain-but-bounded parameters[J]. Mechanical Systems and Signal Processing, 2013, 37(1-2): 163-181.
[18] Chen S, Lian H, Yang X. Interval static displacement analysis for structures with interval parameters[J]. International Journal for Numerical Methods in Engineering, 2002, 53(2): 393-407.
[19] Xiao N. Interval finite element approach for inverse problems under uncertainty[D]. Georgia Institute of Technology, 2015.
[20] Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis[J]. AIAA journal, 1997, 35(4): 727-735.
[21] Neumaier A, Pownuk A. Linear systems with large uncertainties, with applications to truss structures[J]. Reliable Computing, 2007, 13(2): 149-172.
[22] Yaowen Y, Zhenhan C, Yu L. Interval analysis of frequency response functions of structures with uncertain parameters[J]. Mechanics research communications, 2013, 47: 24-31.
[23] Rump S M. INTLAB—interval laboratory[M]//Developments in reliable computing. Springer, Dordrecht, 1999: 77-104.
[24] Xia B, Yu D. Modified interval perturbation finite element method for a structural-acoustic system with interval parameters[J]. Journal of Applied Mechanics, 2013, 80(4): 041027.
[25] Chen N, Yu D, Xia B, et al. Homogenization-based interval analysis for structural-acoustic problem involving periodical composites and multi-scale uncertain-but-bounded parameters[J]. The Journal of the Acoustical Society of America, 2017, 141(4): 2768-2778.

PDF(1463 KB)

Accesses

Citation

Detail

段落导航
相关文章

/