为了研究不同流向壳程流体诱导新型平面弹性管束振动和传热特性,设置了三组不同流向的壳程流体域,分析了新型平面弹性管束在壳程流体冲击下的振动与传热特性,并研究了管束安装角度对新型平面弹性管束平均传热系数的影响。结果表明:当壳程流体从正面冲击新型平面弹性管束时,管束在低流速范围内振动模式为面外振动,在高流速范围内振动模式为面内振动;当壳程流体从侧面冲击新型平面弹性管束时,振动模式为面外振动。低流速时,流体从各方向冲击新型平面弹性管束的振动强度差距不大。高流速时,流体侧面冲击新型平面弹性管束的振动强度较大,振动较剧烈。壳程流体从正面冲击新型平面弹性管束时的传热效果最好。在本文的计算参数范围内,换热器内新型平面弹性管束的最大振幅出现在安装角度为0º或10º时,最大平均传热系数出现在安装角度为-10º时。
关键词:流固耦合;振动响应;传热性能;平面弹性管束;换热器
Abstract
For studying the vibration and heat transfer characteristics of a new planar elastic tube bundle (NPETB) induced by the shell-side fluid of different directions, three groups of shell-side fluid domains with different flow directions were set up. The vibration and heat transfer characteristics of the NPETB impacted by the shell-side fluid were analyzed. The effect of tube bundle installation angle on the average surface heat transfer coefficient of the NPETB was studied. The results indicate that when the shell side fluid impacts the NPETB from the front, the vibration mode of the NPETB is out-plane vibration in the low flow rate range and in-plane vibration in the high flow rate range. The vibration mode of the NPETB is out-plane vibration when the shell side fluid impacts the NPETB from the side. In the low flow rate range, there is little difference in vibration intensity of fluid impacting the NPETB from different directions. In the high flow rate range, the vibration intensity of the NPETB is large and the vibration is violent. The heat transfer performance is the best when the shell side fluid impacts the NPETB from the front. In the range of calculation parameters in this paper, the maximum amplitude of the NPETBs in heat exchanger appears when the installation angle is 0º or 10º, and the maximum average heat transfer coefficient appears when the installation angle is -10º.
Key words: fluid-structure coupling; vibration response; heat transfer performance; planar elastic tube bundle; heat exchanger
关键词
流固耦合 /
振动响应 /
传热性能 /
平面弹性管束 /
换热器
{{custom_keyword}} /
Key words
fluid-structure coupling /
vibration response /
heat transfer performance /
planar elastic tube bundle /
heat exchanger
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 程林. 弹性管束换热器原理与应用[M]. 北京:科学出版社,2001:34-67.
CHENG Lin. Principle and Application of Elastic Tube Heat Exchanger [M].Beijing: Publishing House of Science, 2001: 34-67.
[2] JI Jiadong, GE Peiqi, BI Wenbo. Numerical Analysis of Shell-side Flow-induced Vibration of Elastic Tube Bundle in Heat Exchanger [J]. Journal of Hydrodynamics, 2018, 30(2): 249-257.
[3] DUAN Derong, GE Peiqi, BI Wenbo, et al. Numerical Investigation on The Heat Transfer Enhancement Mechanism of Planar Elastic Tube Bundle By Flow-induced Vibration [J]. International Journal of Thermal Sciences, 2017, 112: 450-459.
[4] JI Jiadong, GE Peiqi, BI Wenbo. Numerical Analysis on Shell-Side Flow-Induced Vibration and Heat Transfer Characteristics of Elastic Tube Bundle in Heat Exchanger [J]. Applied Thermal Engineering, 2016, 107: 544-551.
[5] 季家东,张经纬,高润淼,等. 脉动流发生装置诱导弹性管束振动的实验研究[J]. 振动与冲击,2021,40(3):291-296.
JI Jiadong, ZHANG Jingwei, GAO Runmiao, et al. Test for Pulsating Flow Generator-Induced Vibration of Elastic Tube Bundle [J]. Journal of Vibration and Shock, 2021, 40(3): 291-296.
[6] JI Jiadong, GE Peiqi, LIU Ping, et al. Design and Application of A New Distributed Pulsating Flow Generator in Elastic Tube Bundle Heat Exchanger [J]. International Journal of Thermal Sciences, 2018, 130: 216-226.
[7] JI Jiadong, GAO Runmiao, CHEN Qinghua, et al. Analysis on Fluid-Induced Vibration and Heat Transfer of Helical Elastic Tube Bundles [J]. Journal of Thermophysics and Heat Transfer, 2021, 35(1): 171-178.
[8] 季家东,葛培琪,毕文波. 流体诱导弹性管束振动响应数值分析[J].振动与冲击,2016,35(06):80-84.
JI Jiadong, GE Peiqi, BI Wenbo. Numerical Analysis on Flow-induced Vibration Responses of Elastic Tube Bundle [J]. Journal of Vibration and Shock, 2016, 35(06): 80-84.
[9] JI Jiadong, GAO Runmiao, CHEN Weiqiang, et al. Analysis of Vortex Flow in Fluid Domain with Variable Cross-Section and Design of a New Vortex Generator [J]. International Communications in Heat and Mass Transfer, 2020, 116: 104695.
[10] JI Jiadong, CHEN Weiqiang, GAO Runmiao, et al. Research on Vibration and Heat Transfer in Heat Exchanger with Vortex Generator [J]. Journal of Thermophysics and Heat Transfer, 2021, 35(1): 164-170.
[11] 段德荣,葛培琪,毕文波,等. 平面弹性管束疲劳强度与强化换热的数值分析[J]. 工程热物理学报,2016,37(12):2631-2637.
Duan Derong, GE Peiqi, BI Wenbo, et al. Numerical Study on Fatigue Strength and Heat transfer Enhancement of Planar Elastic Tube Bundle [J]. Journal of Engineering Thermophysics, 2016, 37(12):2631-2637.
[12] 段德荣,葛培琪,毕文波,等. 平面弹性管束疲劳强度与强化换热的数值分析[J]. 工程热物理学报,2016,37(12):2631-2637.
Duan Derong, GE Peiqi, BI Wenbo, et al. Numerical Study on Fatigue Strength and Heat transfer Enhancement of Planar Elastic Tube Bundle [J]. Journal of Engineering Thermophysics, 2016, 37(12):2631-2637.
[13] 闫柯,葛梦然,高军,等. 空间锥螺旋管束流体诱导振动换热器及性能分析[J]. 西安交通大学学报,2011,45(11):22-26.
YAN Ke, GE Mengran, GAO Jun, et al. Performance of Flow-induced Vibration Heat Exchanger with Conical Spiral Tube Bundle [J]. Journal of Xi’an Jiaotong University, 2011, 45(11): 22-26.
[14] 宿艳彩. 弹性管束流体诱导振动及换热特性研究[D]. 济南:山东大学,2012.
SU Yancai. A Study on The Characteristics of The Flow-induced Vibration and Heat Transfer of Elastic Tube Bundle [D]. Jinan: Shandong University, 2012.
[15] SALIMPOUR M R. Heat Transfer Coefficients of Shell and Coiled Tube Heat Exchangers [J]. Experimental Thermal and Fluid Science. 2009, 33(2): 203-207.
[16] 季家东. 弹性管束换热器壳程分布式脉动流诱导管束振动研究[D]. 济南:山东大学,2016.
JI Jiadong. Study on Flow-Induced Vibration of Elastic Tube Bundle with Shell-Side Distributed Pulsating Flow in Heat Exchanger [D]. Jinan: Shandong University, 2016.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}