RV(rotate vector)减速器是现代智能装备中关键传动机构之一,其运动参数的检测信号噪声成分较高,影响了装备的运行精度和稳定性,本文提出了一种以经验模态分解(Empirical Mode Decomposition, EMD)为基础的信号降噪方法,有效提取了RV减速器运动参数的准确信号。该方法采用连续均方误差(Consecutive Mean Square Error, CMSE)和l2范数两个指标将EMD分解得到的固有模态函数(Intrinsic Mode Function, IMF)区分为噪声IMF、噪声与信息相混合IMF、信息IMF三个部分,采用不同策略对这3部分IMF进行处理并结合部分重构(Part Reconstruction, PR)策略实现了信号的降噪处理。采用本文提出的降噪方法对RV40E减速器的检测信号进行处理,降噪后的信号信噪比得到明显改善,验证了该降噪方法的有效性。
Abstract
Rotate vector(RV)reducer is one of key transmission mechanisms in modern intelligent equipment, proportion of noise in its measurement signal of kinetic parameters is strong,which affects the operation accuracy and stability of equipment. This paper proposes a signal-denoising approach based on EMD (Empirical Mode Decomposition), and this approach can extract accurate kinetic-parameter-signals of RV reducer effectively. In the approach, the IMFs (Intrinsic Mode Function) derived from EMD are separated into 3 parts, noise IMFs, IMFs mixed with noise and information, information IMFs, with 2 indexes, CMSE (Consecutive Mean Square Error) and l2 norm. The different processing strategics are applied in 3 parts IMF, and the combination with PR (Part Reconstruction) fulfills the process of denoising. The denoising approach presented in this paper is used in the denoising process for the torque signals of RV40E reducer, the SNRs of denoised signals are improved observably, and the effectiveness of the approach is validated.
Key words: empirical mode decomposition(EMD); RV reducer; consecutive mean square error(CMSE); l2-norm; signal denoising
关键词
EMD /
RV减速器 /
CMSE /
l2范数 /
信号降噪
{{custom_keyword}} /
Key words
empirical mode decomposition(EMD)
/
RV reducer /
consecutive mean square error(CMSE) /
l2-norm /
signal denoising
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PHAM Anh-Duc, AHN Hyeong-Joon. High precision reducers for industrial robots driving 4th industrial revolution: state of arts, analysis, design, performance evaluation and perspective[J]. International Journal Precision Engineering Manufacturing-Green Technology, 2018,5 (4):519–533.
[2] 张大卫, 王刚, 黄田,等. RV减速机动力学建模与结构参数分析[J]. 机械工程学报, 2001(01):70-75.
ZHANG Dawei, WANG Gang, HUANG Tian et al. Dynamic Formulation of RV Reducer and Analysis of Structural Parameters[J]. Chinese Journal of Mechanical Engineering, 2001(01):70-75.
[3] 汪久根, 柯梁亮.RV减速器振动特性分析[J]. 振动与冲击, 2020,39(13): 57-63.
WANG Jiugen, KE Liangliang. Vibration characteristics of a RV reducer[J]. Journal of Vibration and Shock, 2020,39(13):57-63.
[4] 日高照晃, 王宏猷, 石田武ほか. サィクロィド齒車用K-H-V形遊星齒車の回转传达误差に开すゐ研究(第1报,解析方法)[J]. 日本機械学会论文集(C 编),1994,60(570):645-653.
HIDAKA Teruaki, WANG Hongyou, ISHIDA Takeshi, et al. Rotational Transmission Error of K-H-V Planetary Gears with Cycloid Gear (1stf Report, Analytical Method of the Rotational Transmission Error)[J] Journal of Japanese Mechanical Engineering Academy(C), 1994,60(570):645-653.
[5] 石田武, 王宏猷, 日高照晃ほか. サィクロィド齒車用K-H-V形遊星齒車の回转传达误差に开すゐ研究(第2报,各种加工误差、组立误差が回转传达误差に及ほす影响)[J]. 日本機械学会论文集(C 编),1994,60(578):278-285.
ISHIDA Takeshi, WANG Hongyou, HIDAKA Teruaki, et al. Rotational Transmission Error of K-H-V Planetary Gears with Cycloid Gear (2nd Report, Effect of Manufacturing and Assembly Errors on Rotational Transmission Error)[J]. Journal of Japanese Mechanical Engineering Academy(C), 1994,60(578):278-285.
[6] KIM Kyoung-Hong, LEE Chun-Se, AHN Hyeong-Joon. Torsional Rigidity of a Two-stage Cycloid Drive[J]. South Korean Journal of Mechanical Engineering. 2009,33(11): 1217-1224.
[7] 杨玉虎, 朱临宇, 陈振宇, 等. RV减速器扭转刚度特性分析[J]. 天津大学学报 (自然科学与工程技术版), 2015(48):111-118.
YANG Yuhu, ZHU Linyu, CHEN Zhenyu, et al. Analysis of the Characteristics of Torsional Stiffness of RV Reducer[J]. Journal of Tianjin University(Science and Technology). 2015,48(02) :111-118
[8] YANG Yuhu, CHEN Chuan, WANG Shiyu. Response sensitivity to design parameters of RV reducer[J].Chinese Journal of Mechanical Engineering, 2018, 31(3) : 1-13
[9] HUANG Norden E., SHEN Zheng, LONG Steven R., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A.,454 (1998) 903-995.
[10] Huang Norden E., A New Method For Nonlinear And Nonstationary Time Series: Empirical Mode Decomposition and Hilbert Spectral Analysis, Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4056:197-209.
[11] Kopsinis Yannis, McLaughlin Stephen, Development of EMD-Based Denoising Methods Inspired by Wavelet Thresholding[J]. IEEE Transactions on Signal Processing ,2009,57 (4) :1351-1362
[12] 余腾, 胡伍生, 吴杰,等. 基于小波阈值去噪与EMD分解方法提取润扬大桥振动信息[J]. 振动与冲击, 2019, 38(012):264-270.
YU Teng, HU Wusheng, WU Jie, et al. Extraction of Runyang bridge vibration information based on a fusion method of wavelet threshold denoising and EMD decomposition[J]. Journal of Vibration and Shock, 2019, 38(012):264-270.
[13] BOUDRAA Abdel Ouahab, CEXUS Jean Christophe. EMD-based Signal Filtering[J]. IEEE Transactions on Instrumentation & Measurement, 2007, 56(6):2196-2202.
[14] KOMATY Ali, Boudraa, ABDEL Ouahab, DARE, Delphine. Emd-based filtering using the Hausdorff distance[C]// IEEE International Symposium on Signal Processing & Information Technology. IEEE, 2013.
[15] 彭媛宁, 姚恩涛, 石玉, 等. 基于改进EMD与CMSE的风机叶片音频信号去噪方法[J]. 电子测量技术, 2018(2):93-100.
PENG Yuanning, YAO Entao, SHI Yu, et al. Denoising method of audio signal of fan blade based on improved EMD and CMSE[J]. Electronic Measurement Technology, 2018(2):93-100.
[16] KOMATY Ali, BOUDRAA, Abdel Ouahab, AUGIER Benoit, et al. EMD-based filtering using similarity measure between probability density functions of IMFs, IEEE Transactions on Instrumentation and Measurement,2014, 63(1):27-34.
JIN Yan, HAO Zhi-yong. Investigation and improvement of air-in filter acoustic performance towards pass-by noise [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(8): 1143-1145.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}