汽轮机转子系统中共振组织的全局拓扑规律分析

徐璐1,褚衍东2,杨琼1,李险峰2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 273-279.

PDF(2869 KB)
PDF(2869 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 273-279.
论文

汽轮机转子系统中共振组织的全局拓扑规律分析

  • 徐璐1,褚衍东2,杨琼1,李险峰2
作者信息 +

Analysis on the global topological mechanism of resonant organizations in a steam turbine rotor system

  • XU Lu1, CHU Yandong2, YANG Qiong1, LI Xianfeng2
Author information +
文章历史 +

摘要

本文以汽流激振力、非线性油膜力和不平衡离心力共同作用下的汽轮机转子-轴承系统为研究对象。基于GPU并行计算方法,利用高清的双参数平面周期稳定相图并结合传统的单参数数值仿真工具包括分岔图、Lyapunov指数图和时间序列图,揭示了转子系统在双参数平面内周期吸引子的全局拓扑规律。结果表明:转子系统中出现了丰富的满足法里树序列排列的共振组织。得到的拓扑规律有助于对汽轮机转子系统的非线性动力学特性更进一步地认识,为大型旋转机械系统的参数匹配、优化设计及故障预测提供有价值的参考。
关键词:汽轮机转子系统;双参数平面;分岔;混沌; 共振组织

Abstract

This paper investigates the steam turbine rotor system influenced by the air exciting-vibration force, the non-linear oil-film force and the unbalanced eccentricity force. Based on the GPU parallel computing method, by employing abundant biparametric stability phase diagrams and traditional codimension-one numerical tools including bifurcation diagram, Lyapunov exponent diagram, and time series diagram, the paper reveals the topological rules of the periodic attractors of the rotor system with respect to the two-dimensional parameter planes. The results show that the distribution of the resonant organizations satisfying the Farey-sum sequences is a generic feature. The obtained topological rules will contribute to the profound understanding for the nonlinear dynamical characteristics of the steam turbine rotor system and provide valuable reference for the parameter matching, the optimal design and failure prediction in the field of the large scale rotating machinery systems.
Key words: steam turbine rotor system; two-dimensional parameter planes; bifurcation; chaos; resonant organization

关键词

汽轮机转子系统;双参数平面;分岔;混沌 / 共振组织

Key words

steam turbine rotor system / two-dimensional parameter planes / bifurcation / chaos / resonant organization

引用本文

导出引用
徐璐1,褚衍东2,杨琼1,李险峰2. 汽轮机转子系统中共振组织的全局拓扑规律分析[J]. 振动与冲击, 2022, 41(18): 273-279
XU Lu1, CHU Yandong2, YANG Qiong1, LI Xianfeng2. Analysis on the global topological mechanism of resonant organizations in a steam turbine rotor system[J]. Journal of Vibration and Shock, 2022, 41(18): 273-279

参考文献

[1] Rao X B, Chu Y D, Chang Y X, et al. Dynamics of a cracked rotor system with oil-film force in parameter space [J]. Nonlinear Dynamics, 2017, 88(4): 2347-2357.
[2] Xu L, Chu Y D, Yang Q. Novel dynamical scenario of the two-stage Colpitts oscillator [J]. Chaos, Solitons & Fractals, 2020, 138: 109998.
[3] Wei S, Chu F L, Chen L Q, et al. Dynamic analysis of uncertain spur gear systems [J]. Mechanical Systems and Signal Processing, 2021, 150: 107280.
[4] Zhang D B, Tang Y Q, Chen L Q, et al. Dynamic stability of an axially transporting beam with two-frequency parametric excitation and internal resonance [J]. European Journal of Mechanics-A/Solids, 2021, 85: 104084.
[5] Salvatore A, Carboni B, Chen L Q, et al. Nonlinear dynamic response of a wire rope isolator: Experiment, identification and validation [J]. Engineering Structures, 2021, 238: 112121.
[6] 刘小峰,张池,柏林等. 交叉刚度对转子碰摩动力学特性的影响分析[J]. 振动与冲击, 2021, 40(11): 176-181+219.
Liu Xiaofeng, Zhang Chi, Bo Lin, etc. Effects of cross stiffness on dynamic characteristics of rubbing rotor [J]. Journal of vibration and shock, 2021, 40(11): 176-181+219.
[7] 徐文标,王艾伦,廖泽雨等. 裂纹拉杆转子连接界面非线性建模与多参数演变规律研究[J]. 振动与冲击, 2020, 39(6): 138-146+188.
Xu Wenbiao, Wang Ailun, Liao Zeyu, etc. Nonlinear modeling of the connection interface of a rod-fastened rotor with cracked rod and its multi-parameter evolution [J]. Journal of vibration and shock, 2020, 39(6): 138-146+188.
[8] 张金剑,张雷克,吴嵌嵌等. 动静偏心电磁激励下水电机组碰摩转子-轴承系统弯扭耦合振动特性分析[J]. 振动与冲击, 2021, 40(12): 236-245.
Zhang Jinjian, Zhang Leike, Wu Qianqian, etc. Coupled bending-torsional vibration characteristics analysis for a rotor-bearing system with rub-impact of hydraulic generating set under both dynamic and static eccentric electromagnetic excitation [J]. Journal of vibration and shock, 2021, 40(12): 236-245.
[9] 柴山,张耀明,马浩,曲庆文等. 汽轮机调节级的气流激振力分析[J]. 应用数学和力学, 2001, (07): 706-712.
Chai Shan, Zhang Yaoming, Ma Hao, Qu Qingwen,etc. The Analysis of the Airflow Exciting Vibration Force of Control Stage of Steam Turbine [J]. Applied Mathematics and Mechanics, 2001, (07): 706-712.
[10] 柴山,张耀明,曲庆文等. 汽轮机间隙气流激振力分析[J]. 中国工程科学, 2001, (04): 68-72.
Chai Shan, Zhang Yaoming, Qu Qingwen, etc. The Analysis on the Air-Exciting-vibration Force of Steam Turbine [J]. Engineering Science, 2001, (04): 68-72.
[11] 柴山,张耀明,曲庆文等. 汽轮机扭叶片级间隙气流激振力分析[J]. 中国电机工程学报, 2001, (05): 12-17.
Chai Shan, Zhang Yaoming, Qu Qingwen, etc. An Analysis on the Air Exciting-vibration Force of Twist Blade of Steam Turbine [J]. Proceedings of the CSEE, 2001, (05): 12-17.
[12] 张野. 汽轮机转子—轴承系统非线性动力学研究[D]. 哈尔滨工业大学, 2007.
Zhang Ye. Research of the Nonlinear Dynamics of Rotor-Bearing System of Turbine [D]. Harbin: Harbin Institute of Technology, 2007.
[13] 辛晓辉. 刚性转子在气流力和油膜力作用下的非线性动力学特性[D]. 天津大学, 2006.
Xin Xiaohui. The Nonlinear Dynamic Characteristics of Rigid Rotor System under the Oil-Film Force and Steam Exciting-Force [D]. Tianjing University, 2006.
[14] 黄来,黄丕维,刘永辉等. 气流力、油膜力和质量偏心共同作用下的转子非线性动力学研究[J]. 汽轮机技术, 2007, (06): 428-431+438.
Huang Lai, Huang Peiwei, Liu Yonghui,etc. Study of Nonlinear Dynamic Characteristics of Turbine Rotor System under Oil-film Force Alford Force and Quality Eccentricity [J]. Turbine Technology, 2007, (06): 428-438.
[15] 杨喜关. 气流激振力作用下转子系统稳定性分析[D]. 南京航空航天大学, 2008.
Yang Xiguan. Stability Analysis of the Rotor System under the Gas Exciting Force [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
[16] 赵亚杰. 汽流激振下转子—轴承系统的稳定性[D]. 哈尔滨工业大学, 2006.
Zhao Yajie. Stability of the Rotor-Bearing System with Air Excitation [D]. Harbin: Harbin Institute of Technology, 2006.
[17] 吴敬东,张旭东,鄢利群等. 气流激振力作用下转子的非线性特性研究[J]. 沈阳化工大学学报, 2011, 25(04): 343-348+353.
Wu Jingdong, Zhang Xudong, Yan Liqun, etc. Nonlinear Characteristics about Rotors under Gas-exciting [J]. Journal of Shenyang University of Chemical Technology, 2011, 25(04): 343-348+353.
[18] 曹丽华,颜洪,司和勇. 非线性汽流激振力对超超临界汽轮机转子运动特性的影响[J]. 振动与冲击, 2021, 40(17): 25-31.
Cao Lihua, Yan Hong, Si Heyong. Effects of nonlinear steam flow exciting force on motion characteristics of ultra-supercritical steam turbine rotor [J]. Journal of vibration and shock, 2021, 40(17): 25-31.
[19] 瓮雷,杨自春,曹跃云等. 汽轮机非线性间隙气流激振力作用下转子系统的分岔研究[J]. 海军工程大学学报, 2015, 27(5):52-57.
Weng Lei, Yang zichun, Cao Yueyun,etc. Bifurcation characteristics of rotor-bearing system under air-exciting force of steam turbine [J]. Journal of Naval University of Engineering, 2015, 27(5): 52-57.
[20] 瓮雷,张磊,刘东. 舰船汽轮机汽流激振时转子松动故障振动分析[J]. 舰船科学技术, 2020, 42(6): 126-131.
Weng Lei, Zhang Lei, Liu Dong. Vibration analysis of rotor loosening fault of ship steam turbine under steam flow excitation [J]. Ship Science and Technology, 2020, 42(6): 126-131.
[21] 瓮雷,张磊. 考虑汽轮机汽流激振时裂纹转子的振动特性研究[J]. 振动与冲击, 2020, 39(22): 137-142+168.
Weng Lei,Zhang Lei. Vibration fault features of the rotor with cracks under steam flow-exciting force of a marine steam turbine [J]. Journal of Vibration and Shock, 2020, 39(22): 137-142+168.
[22] 瓮雷,杨自春,陈国兵等. 非线性间隙气流激振力作用下汽轮机转子碰摩故障研究[J]. 舰船电子工程, 2016, 36(9): 89-94.
Weng Lei, Yang ZIchun, Chen Guobing, etc. Dynamic Analysis for rotor system with rub-impact of a steam turbine under the air-exciting force [J]. Ship electronic engineering, 2016, 36(9): 89-94.
[23] 瓮雷,向智玮. 汽流激振力下转子裂纹-碰摩振动故障研究[J]. 机械设计与制造, 2021, (8): 91-94+98.
Weng Lei, Xiang Zhiwei. Research on Vibration Fault Features of a Rotor under Steam Flow-Exciting Force with Coupling Faults of Crack and Rub-Impact [J], Machinery Design & Manufacture, 2021, (8): 91-94+98.
[24] 罗跃纲,王鹏飞,徐昊等. 密封-转子系统气流激振问题数值仿真[J]. 航空动力学报, 2019, 34(9): 1857-1865.
Luo Yuegang, Wang Pengfei, Xu Hao, etc. Numerical Simulation on Seal-Rotor System with Airflow Induced Vibration [J]. Journal of Aerospace Power, 2019, 34(9): 1857-1865.
[25] 司和勇,曹丽华,颜洪等. 汽流激振力诱导汽轮机转子的非线性运动特征[J]. 中国电机工程学报, 2020, 40(10): 3250-3258.
Si Heyong, Cao Lihua, Yan Hong, etc. Nonlinear Motion Characteristics of Steam Turbine Rotor Induced by Steam Exciting Force.[J]. Proceedings of the CSEE, 2020, 40(10): 3250-3258.
[26] Wang J, Zhou J, Dong D. Nonlinear dynamic analysis of a rub-impact rotor supported by oil film bearings [J]. Archive of Applied Mechanics, 2013, 83(3): 413-430.
[27] Gallas J A C. Overlapping Adding-Doubling Spikes Cascades in a Semiconductor Laser Proxy [J]. Brazilian Journal of Physics, 2021, 21(4): 1-8.
[28] Fazanaro F I, Soriano D C, Suyama R, et al. Numerical characterization of nonlinear dynamical systems using parallel computing: The role of GPUs approach [J]. Communications in Nonlinear Science and Numerical Simulation, 2016, (37): 143-162.
[29] Xu L, Chu Y D, Yang Q, Li X F. Complexity of periodic sequences of large-scale rotating machinery system coupled by multi-fault. International Journal of Physics C. (accepted)
[30] Belova A. Rigorous enclosures of rotation numbers by interval methods [J]. Journal of Computational Dynamics, 2017, 3(1): 81-91.
[31] Hegedüs. Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blake's critical threshold: Infinite sequence of two-sided Farey ordering trees. Physics Letters A, 2016, 380(9-10): 1012-1022.
[32] Gao L,GOTTRON III N J, Virgin L N, et al. The synchronization of superparamagnetic beads driven by a micro-magnetic ratchet [J]. Lab on A Chip, 2010, 10(16): 2108-2114.
 

PDF(2869 KB)

Accesses

Citation

Detail

段落导航
相关文章

/