Aiming at the problem that the operating conditions of angular contact ball bearing (ACBB)with local defects are complex and difficult to describe accurately at high speed, the quasi-static model and contact stiffness model of ACBB with local defects considering thermal effect and high-speed effect are proposed. The dynamic characteristics of ACBB under different influencing factors are studied. The results show that the contact load and contact stiffness of the bearing increase obviously when the thermal effect is considered. The greater the axial angle of the local defect, the greater the depth of the roller into the defect, and the smaller the contact stiffness of the defect area. The larger the circumferential angle of local defects, the more the roller falls into defects, and the greater the contact load in the non-defect area.
Key words: dynamic characteristics, local defects, thermal effect, ACBB
LEI Chunli,LIU Kai,SONG Ruizhe,XUE Wei,LI Jianhua.
Dynamic characteristics of angular contact ball bearings with localized defects considering thermal effect[J]. Journal of Vibration and Shock, 2022, 41(18): 33-40
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王国彪, 何正嘉, 陈雪峰, 等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报,2013.
Wang Guobiao, he Zhengjia, Chen Xuefeng, et al. Basic research on mechanical fault diagnosis "where to go" [J]. Journal of mechanicalengineering, 2013.
[2] 代贵松, 袁峰, 张余升, 等. 电主轴热特性分析与基于自然指数的热误差建模[J]. 机床与液压, 2014, 42(17): 9-13.
Dai Guisong, Yuan Feng, Zhang Yusheng, et al. Thermal characteristic analysis of motorized spindle and thermal error modeling based on natural index [J]. Machine tool and hydraulic, 2014, 42 (17): 9-13.
[3] 宋明晟. 角接触球轴承接触应力与疲劳寿命分析[D]. 河北工程大学, 2018.
Song Mingsheng. Contact stress and fatigue life analysis of angular contact ball bearing [D]. Hebei University of engineering, 2018.
[4] Kong F Z, Huang W T, Jiang Y с, et al. A
vibration model of ball bearings with a localized
defect based on the hertzian contact stress distribution[J]. Shock and Vibration, 2018: 1-14.
[5] Petersen D, Howard C, Sawalhi N, et al. Analysis of bearing stiffness variations, contact forces and vibrations in radially loaded double row rolling element bearings with raceway defects[J]. Mechanical Systems and Signal Processing, 2015, 50: 139-160.
[6] 常斌全, 剡昌锋, 苑浩等.多事件激励的滚动轴承动力学建模[J]. 振动与冲击, 2018, 37(17): 16-24.
Chang Binquan, Yan Changfeng, Yuan Hao, et al.Dynamic modeling of rolling bearing under multievent excitation[J]. Vibration and shock, 2018,37(17): 16-24.
[7] 刘静. 滚动轴承缺陷非线性激励机理与建模研究[D]. 重庆:重庆大学,2014.
Liu Jing. Research on nonlinear excitation mechanism and modeling of rolling bearing defects[D]. Chongqing:Chongqing University, 2014.
[8] 关贞珍, 郑海起, 王彦刚, 等. 滚动轴承局部损伤故障动力学建模及仿真[J]. 振动、测试与诊断, 2012, 32(6): 950-955.
Guan Zhenzhen, Zheng Haiqi, Wang Yangang, et al. Dynamic modeling and Simulation of local damage fault of rolling bearing [J].Journal of Vibration ,Measurement & Diagnosis, 2012, 32 (6): 950-955.
[9] Li X, Yu K, Ma H, et al. Analysis of varying contact angles and load distributions in defective angular contact ball bearing [J]. Engineering Failure Analysis, 2018, 91:449-464.
[10] Liu Y, Zhu Y, Yan K, et al. A novel method to model effects of natural defect on roller bearing [J]. Tribology International,2018,122:169-178.
[11] Niu L, Cao H, and Xiong X. Dynamic modeling and vibration response simulations of angular contact ball bearings with ball defectsconsidering the three-dimensional motion of balls [J]. Tribology International, 2017, 109:26-39.
[12] Nabhan A, Nouby M, Sami A, et al. Vibration analysis of deep groove ball bearing without errace defect using ABAQUS[J]. Journal of Low Frequency Noise Vibration and Active Control, 2016, 35(4): 312-325.
[13] Li J, Lei C, Gong B, et al. Modeling andanalysis of the composite stiffness for angular contact ball bearings[J]. Shock and Vibration, 2020, 2020: 1-22.
[14] Lei C, Li F, Gong B, et al. An integrated model to characterize comprehensive stiffnessof angular contact ball bearings [J]. Mathematical Problems in Engineering, 2020, 2020(4951828): 1-12.
[15] 雷春丽, 李復宏, 郭俊锋, 等. 基于多参数耦合的滚动轴承油膜刚度分析[J]. 振动与冲击, 2018, 37(10): 225-232.
Lei Chunli, Li Fuhong, Guo Junfeng, et al. Analysis on the oil film stiffness of rolling bearings based on multi parameter coupling [J]. Journal of Vibration and Shock, 2018, 37 (10): 225-232.
[16] 任帅, 徐可君, 秦海勤, 等. 具有外圈单一点蚀故障的滚动轴承动力学建模及仿真[J].南昌航空大学学报(自然科学版), 2014(28):85-90.
Ren Shuai, Xu Kejun, Qin Haiqin, et al. Dynamics modeling and simulation on rolling bearing element with single outer race defect[J]. Journal of Nanchang Aviation University (NATURAL SCIENCE EDITION), 2014 (28): 85-90.
[17] 丁为民, 潘帅航, 张执南. 含缺陷滚动轴承内部载荷分布[J]. 机械设计与研究, 2016, 032(004):79-84.
Ding Weimin, pan shuaihang, Zhang Zhinan. Load distribution of rolling bearing with localized defect [J]. Mechanical design and research, 2016, 032 (004): 79-84.
[18] 李昌, 孙志礼. 基于弹流润滑理论的深沟球轴承动态虚拟仿真[J]. 航空动力学报, 2009, 24(4):951-956.
Li Chang, Sun Zhili. Dynamic virtual simulation of deep groove ball bearing based on elastohydrodynamic lubrication theory [J]. Journal of Aeronautical power, 2009, 24 (4): 951-956.
[19] 巩宝儒. 自选条件下角接触球轴承刚度分析[D]. 兰州:兰州理工大学, 2020.
Gong Baoru. Stiffness analysis of angular contact ball bearings under self-selected conditions [D]. Lanzhou: Lanzhou University of Technology, 2020.
[20] 李震, 关先磊, 钟锐, 等.联合载荷下角接触球轴承的动态特性分析[J].机械工程学报,2020,56(17):116-125.
Li Zhen, Guan xianlei, Zhong Rui, et al. Analysis of dynamic characteristics of angle contact bearings with combined loads[J]. Journal of mechanical engineering, 2020,56 (17):116-125.
[21] Kraus J, Blech J J, Braun S G. In situ determination of rolling bearing stiffness and damping by modal analysis[J]. Journal of Vibration Acoustics, 1987; 109(3): 235–240.
[22] 张亚斌. 多参数影响的高速电主轴热态特性研究[D]. 兰州:兰州理工大学, 2019.
Zhang Yabin. Research on thermal characteristics of high-speed motorized spindle influenced by multiple parameters [D]. Lanzhou: Lanzhou University of Technology, 2019.
[23] Cheng H, Zhang Y, Lu W, et al. Research on time-varying stiffness of bearing based on local defect and varying compliance coupling[J]. Measurement, 2019, 143: 155-179.