基于Welch功率谱的加速度积分改进方法研究

李展铨1,陈太聪1,2,3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 41-46.

PDF(1487 KB)
PDF(1487 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 41-46.
论文

基于Welch功率谱的加速度积分改进方法研究

  • 李展铨1,陈太聪1,2,3
作者信息 +

Improved acceleration integration method based on Welch power spectrum

  • LI Zhanquan1,CHEN Taicong1,2,3
Author information +
文章历史 +

摘要

针对带噪加速度信号的积分问题,新近发展的有效频段法相对于传统的频率截止法,积分精度和抗噪性得到了较大改善。但多个分析频率范围需要人为指定,且高噪声的适应性仍较差,不利于工程实践。基于加速度信号的Welch功率谱,提出改进的有效频段法。首先针对Welch功率谱曲线,综合应用5%峰值阈值和邻近波谷频率,实现分析频率范围的自动定义。继而提出基于Welch功率谱曲线和基于Welch功率谱开方曲线的两种不同形态拟合方法,实现有效频段的自动识别。最终进行有效频段内的频域积分,得到相应的速度和位移信号。通过数值模拟算例,对比考察原有效频段法和改进方法在多频激励和随机激励下的积分效果。结果表明,相对于原方法,改进方法可以实现加速度积分的全程自动分析,且抗噪性能进一步加强,其中基于Welch功率谱曲线和基于Welch功率谱开方曲线的形态拟合分别适用于高噪声下的多频激励情况和随机激励情况。
关键词:加速度积分;频域积分;有效频段;Welch功率谱

Abstract

For the integration of noisy acceleration signals, the newly developed effective frequency band method has greatly improved the integration accuracy and noise immunity compared with the traditional frequency cutoff method. However, multiple frequency ranges for analysis need to be artificially specified and the adaptation to high noise is still poor, which is not conducive to engineering practice. Based on the Welch power spectrum of acceleration signals, an improved effective frequency band method is proposed. Firstly, with the Welch power spectrum curve, the 5%-peak threshold and the neighboring trough frequencies are integrated and applied to achieve the automatic definition of multiple frequency ranges for analysis. Following that, two different morphological fitting methods based on the Welch power spectrum curve and the Welch power spectrum squared curve, respectively, are proposed to realize the automatic identification of the effective frequency bands. Finally, the corresponding velocity and displacement signals are obtained through frequency-domain integration within the effective frequency bands. Through numerical simulation examples, the integration effects of the original effective frequency band method and the improved method are examined comparatively under multi-frequency excitation and random excitation. The results show that, in contrast to the original method, the improved method can realize the whole-process automatic analysis of acceleration integration, and the noise immunity is further enhanced, in which the Welch power spectrum curve based morphological fitting is applicable to the case of multi-frequency excitation under high noise, as well as the Welch power spectrum squared curve based one to the case of random excitation.
Key words: acceleration integration; frequency domain integration; effective frequency band; Welch power spectrum

关键词

加速度积分 / 频域积分 / 有效频段 / Welch功率谱

Key words

acceleration integration / frequency domain integration / effective frequency band / Welch power spectrum

引用本文

导出引用
李展铨1,陈太聪1,2,3. 基于Welch功率谱的加速度积分改进方法研究[J]. 振动与冲击, 2022, 41(18): 41-46
LI Zhanquan1,CHEN Taicong1,2,3. Improved acceleration integration method based on Welch power spectrum[J]. Journal of Vibration and Shock, 2022, 41(18): 41-46

参考文献

[1] Ignace M, Andre R B, Arijit S, et al. System identification of UCSD-NHERI shake-table test of two-story structure with cross-laminated timber rocking walls [J]. Journal of Structural Engineering, 2021, 147(4): 04021018.
[2] Prawin J, Anbarasan R. A novel Mel-frequency cepstral analysis based damage diagnostic technique using ambient vibration data [J]. Engineering Structures, 2021, 228: 111552.‏
[3] Joseph M. Seismic performance and retrofit evaluation of reinforced concrete structures [J]. ACI Structural Journal, 1997, 123(1): 3-10.
[4] Lee K, Foutch D A. Performance evaluation of new steel frame buildings for seismic loads [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 653-670.
[5] Phani A S, Woodhouse J. Experimental identification of viscous damping in linear vibration [J]. Journal of Sound and Vibration, 2009, 319: 832-849.
[6] Pintelon R, Schoukens J. Real-time integration and differentiation of analog-signals by means of digital filtering [J]. IEEE Transactions on Instrument and Measurement, 1990, 39(6): 923-927.
[7] 徐庆华. 试采用FFT方法实现加速度、速度与位移的相互转换[J]. 振动、测试与诊断, 1997, (04): 30-34.
XU Qinghua. The conversion of acceleration, velocity and displacement realized by FFT method [J]. Journal of Vibration, Measurement & Diagnosis, 1997, (04): 30-34.
[8] Brandt A, Brincker R. Integrating time signals in frequency domain - Comparison with time domain integration [J]. Measurement, 2014, 58: 511-519.
[9] 方新磊, 郝伟, 陈宏. 基于频域滤波的加速度信号处理[J]. 仪表技术与传感器, 2012, 4: 94-96.
FANG Xinlei, HAO Wei, CHEN Hong. Acceleration signal processing based on frequency domain filtering [J]. Instrument Technique and Sensor, 2012, 4: 94-96.
[10] 陈太聪, 张奇. 基于频谱能量形态拟合的加速度积分方法研究[J]. 振动与冲击, 2019, 38(13): 7-12+20.
CHEN Taicong, ZHANG Qi. Acceleration integration method based on frequency spectral energy morphological fitting [J]. Journal of Vibration and Shock, 2019, 38(13): 7-12+20.
[11] 杨婧,程乃平,倪淑燕. Welch算法在弱信号检测中的性能分析[J]. 计算机仿真, 2020, 37(5): 235-240.
YANG Jing, CHENG Naiping, NI Shuyan. Performance analysis of Welch algorithm in weak signal detection [J]. Computer Simulation, 2020, 37(5): 235-240.
[12] 王福杰, 潘宏侠. MATLAB中几种功率谱估计函数的比较分析与选择[J]. 电子产品可靠性与环境试验, 2009, 27(06): 28-31.
WANG Fujie, PAN Hongxia. Analysis and selection of several power spectrum estimation functions in MATLAB [J]. Electronic Product Reliability and Environmental Testing, 2009, 27(06): 28-31.
[13] 周臻,孟少平,吴京. 预应力双层柱面网壳的风振响应与整体风振系数研究[J]. 工程力学, 2011, 28(10): 124-132.
ZHOU Zhen, MENG Shaoping, WU Jing. The wind-induced response and global wind vibration coefficient of prestressed double-layer cylindrical reticulated shells [J]. Engineering Mechanics, 2011, 28(10): 124-132.
[14] 房建, 雷晓燕, 练松良. 合-武客运专线轨道不平顺谱特性实测分析[J]. 铁道学报, 2015, 37(7): 79-85.
FANG Jian, LEI Xiaoyan, LIAN Songliang. Analysis on characteristics of track irregularity spectrum of Hefei-Wuhan passenger dedicated line [J]. Journal of the China Railway Society, 2015, 37(7): 79-85.
[15] 白永福, 高翔, 张伟, 奚冲霄, 王凌. 海拉尔台阵数据功率谱分析[J]. 防灾减灾学报, 2020, 36(2): 49-55.
BAI Yongfu, GAO Xiang, ZHANG Wei, XI Chongxiao, Wang Ling. Analysis of the array data power spectrum in Hailar [J]. Journal of Disaster and Reduction, 2020, 36(2): 49-55.
[16] 李德保, 陆秋海. 工程振动试验分析[M]. 北京: 清华大学出版社, 2004.
LI Debao, LU Qiuhai. Engineering Vibration Test Analysis [M]. Beiiingg: Tsinghua UniveIsity Press, 2004.
[17] 叶其孝, 沈永欢. 实用数学手册[M]. 北京: 科学出版社, 2006.
YE Qixiao, SHEN Yonghuan. Practical Mathematics Handbook [M]. Beijing: Science Press, 2006.
[18] Ang H-S A, Tang W H. Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering (2nd Edition) [M]. New York: John Wiley & Sons, 2007.
[19] Han S. Measuring displacement signal with an accelerometer [J]. Journal of Mechanical Science and Technology, 2010, 24(6): 1329-1335.

PDF(1487 KB)

346

Accesses

0

Citation

Detail

段落导航
相关文章

/