振荡翼式水流能发电装置近年来受到能源领域的关注,水翼的运动参数和排列方式对获能功率有着重要影响。为分析串联式振荡水翼的纵向间距对获能的影响,寻找最优获能规律,基于开源计算流体软件OpenFOAM,采用动网格技术对前后串联振荡双翼的获能情况进行了研究。发现翼间总体相位差在π/2附近时,双翼装置的总体获能效率达到最大,约为53.3%;为进一步提升双翼装置的获能,改变上下游振荡水翼平衡位置的纵向间距,形成上、下游两翼错位排列,当两水翼竖直方向平衡位置间距处于3.5倍弦长时,后翼的获能效率可达45.3%,获能表现显著提升;错位排列时,前翼的尾涡在经过后翼时,改变了后翼涡脱落的时间点和位置,影响了后翼表面的压力分布,从而使升力与升沉运动间的同步性更佳,提升了获能。上、下游两翼错位排列布置对串联式振荡水翼产生的获能提高有积极作用。
关键词:串联水翼,折算频率,动网格,尾涡,错位排列
Abstract
In recent years, the oscillating hydrofoil power generation device has attracted much attention in the energy field. The motion parameters and arrangements of the hydrofoils have an essential impact on power extraction. To analyze the influence of longitudinal spacing of tandem oscillating hydrofoil on power extraction and find the optimal power extraction region, based on an open source computational fluid software OpenFOAM, the dynamic mesh technology was applied to study the performance of tandem oscillating hydrofoils. It is found that when the global phase between the dual hydrofoils is about π/2, the total energy harvesting efficiency reaches the maximum, which is about 53.3%. To further improve the power extraction of the system, the longitudinal spacing of the balanced position between the upstream and downstream oscillating hydrofoils is changed to form an interlaced arrangement. When the balanced position spacing of the dual hydrofoils is 3.5 times the chord length, the power extraction efficiency of the downstream hydrofoil can reach up to 45.3%, and the performance of power extraction is significantly improved. When the hydrofoils are interlaced, the trailing vortex of the upstream hydrofoil changes the time and position of vortex shedding on the downstream hydrofoil, which affects the distribution of pressure on the surface of the hydrofoil. And this effect improves the synchronization of lift and heave motion which has a beneficial impact on power extraction. The interlaced arrangement of the dual hydrofoils has a positive effect on the power extraction of the tandem oscillating hydrofoils.
Key words: tandem hydrofoil, reduced frequency, dynamic mesh, wake vortex, interlaced arrangement
关键词
串联水翼 /
折算频率 /
动网格 /
尾涡 /
错位排列
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 戴庆忠. 潮流能发电及潮流能发电装置[J]. 东方电机, 2010(2): 51-66.
DAI Qingzhong. Introduction of tidal currents generation and relative device [J]. Oriental motor, 2010(2): 51-66.
[2] 张亮, 李新仲, 耿敬,等. 潮流能研究现状2013[J]. 新能源进展, 2013(01): 57-72.
ZHANG Liang, LI Xinzhong, GENG Jing, et al. Tidal current energy update 2013[J]. Advances in new and renewable energy, 2013(01): 57-72.
[3] Mckinney W., De Laurier J. The wingmill: An oscillating-wing windmill [J]. Journal of Energy, 1981, 1(2): 80-87.
[4] Xiao Q., Zhu Q., et al. A review on flow energy harvesters based on flapping foils [J]. Journal of Fluids & Structures, 2014, 46: 174-191.
[5] Liu P. A time-domain panel method for oscillating propulsors with both chordwise and spanwise flexibility [D]. Memorial University of Newfoundland (Canada). 1996.
[6] Simpson B.J. Experimental studies of flapping foils for energy extraction [D]. Massachusetts Institute of Technology, 2009.
[7] Kinsey T., Dumas G. Parametric Study of an Oscillating Airfoil in a Power-Extraction Regime [J]. Aiaa Journal, 2008, 46(6): 1318-1330.
[8] Kinsey T., Dumas G. Optimal Operating Parameters for an Oscillating Foil Turbine at Reynolds Number 500,000[J]. Aiaa Journal, 2014, 52(9): 1885-1895.
[9] Deng J., Caulfield C.P., Shao X. Effect of aspect ratio on the energy extraction efficiency of three-dimensional flapping foils [J]. Physics of Fluids, 2014, 26(4): 041101-594.
[10]王威, 王聪, 李聪慧, 等. 周期性阵风流对通气航行体超空泡形态及流体动力特性影响[J]. 振动与冲击, 2019, 38(013): 208-214.
WANG Wei, WANG Cong, LI Conghui, et al. Effects of periodic gust flow on super-cavitation morphology and hydrodynamic characteristics of a ventilated vehicle [J]. Journal of vibration and shock, 2019, 38(013): 208-214.
[11]何科杉, 陈严, 漆良文, 周奇.风力机尾缘襟翼气动特性及减振性能研究[J].振动与冲击, 2021, 40(15): 198-206.
HE Keshan, CHEN Yan, QI Liangwen, ZHOU Qi. Aerodynamic characteristics and vibration reduction performance of trailing edge flap of wind turbine [J]. Journal of vibration and shock, 2021, 40(15): 198-206.
[12]刘龙, 张怀新, 姚慧岚. 质量静矩和惯性矩对水翼流致振动及噪声影响的数值研究[J].振动与冲击, 2019, 38(04): 213-221.
LIU Long, ZHANG Huaixin, YAO Huilan. A numerical study on the effects of mass moment and moment of inertia on hydrofoil's flow-induced vibration and noise [J]. Journal of vibration and shock, 2019, 38(04): 213-221.
[13]李国俊, 白俊强, 唐长红, 李宇飞, 刘南.分离流动诱发的失速颤振和锁频现象研究[J].振动与冲击, 2018, 37(19): 97-103.
LI Guojun, BAI Junqiang, TANG Changhong, LI Yufei, LIU Nan. Separation flow induced stall flutter and frequency locking phenomena [J]. Journal of vibration and shock, 2018, 37(19): 97-103.
[14] Kinsey T., Dumas G., Lalande G., et al. Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils [J]. Renewable Energy, 2011, 36(6): 1710-1718.
[15] Kinsey T. Optimal Tandem Configuration for oscillating-foils hydrokinetic turbine [J]. Journal of Fluids Engineering, 2012, 134(3): 031103.
[16] Kinsey T., Dumas G. Computational fluid dynamics analysis of a hydrokinetic turbine based on oscillating hydrofoils [J]. Journal of Fluids Engineering, 2012, 134(2): 021104.
[17] Ma P., Wang Y., Xie Y., et al. Behaviors of two semi-passive oscillating hydrofoils with a tandem configuration [J]. Energy, 2021, 214: 118908.
[18] Xu G.D., Xu W. Energy extraction of two flapping foils with tandem configurations and vortex interactions [J]. Engineering Analysis with Boundary Elements, 2017, 82(sep.): 202-209.
[19] Pourmahdavi, M., Liu, P. Shallow water effect of tandem flapping foils on renewable energy production [J]. International Journal of Green Energy, 2019, 16 (14), 1353-1362.
[20] Xu J., Sun H., Tan S. Wake vortex interaction effects on energy extraction performance of tandem oscillating hydrofoils [J]. Journal of Mechanical Science and Technology, 2016, 30(9): 4227-4237.
[21] Srinidhi N.G., Vengadesan S. Ground effect on tandem flapping wings hovering [J]. Computers & Fluids, 2017, 152.
[22] Yang H, He G., Mo W, Wang W. Energy extraction performance of tandem ground-effect hydrofoils [C]. Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 809(1): 012001.
[23] Dahmani F., Sohn C.H. Effects of the downstream spatial configuration on the energy extraction performance of tandem/parallel combined oscillating hydrofoils [J]. Journal of Mechanical Science and Technology, 2020, 34(7206):1-12.
[24] Karbasian H.R., Esfahani J.A., Barati E. Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation [J]. Renewable Energy, 2015, 81(sep.):816-824.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}