基于谱几何法构建了考虑温度场影响的功能梯度(functionally graded material,FGM)圆锥壳振动特性分析模型,在该模型中假设材料特性与温度相关并沿厚度方向变化。首先,采用人工弹簧技术来模拟圆锥壳的任意边界条件,并在一阶剪切变形理论框架下推导出温度场影响下FGM圆锥壳振动能量方程;然后应用高效、准确的谱几何法与周向傅里叶谐波函数乘积和的形式来描述壳体位移容许函数。在此基础上,将位移容许函数代入振动能量方程,并采用Rayleigh-Ritz法对位移容许函数未知级数展开系数进行变分操作即可获得热环境下FGM圆锥壳的振动求解方程。通过将文中构建模型求解结果与现有文献解和有限元分析结果对比分析,验证了所构建模型的正确性。最后,研究了边界条件、材料特性、几何结构参数以及温度场等因素对FGM圆锥壳瞬态振动特性的影响规律。
关键词:功能梯度圆锥壳;热环境;自由振动;瞬态振动;谱几何法
Abstract
Based on the spectro-geometric method, the prediction model for vibration characteristics of the functionally graded material (FGM) conical shell under thermal environment is established in this presentation. In the current model, temperature-dependent material characteristics, which change with the shell thickness direction is considered. Firstly, the boundary conditions for the shell is simulated with the artificial spring theory. The energy equation of the FGM conical shell under thermal environment is derived with the framework of the first-order shear deformation theory. Then, an efficient and accurate spectro-geometric method and the form of the sum of the products of the circumferential Fourier harmonic function are employed to express the displacement admissible function. On the basis, the displacement admissible functions are substituted into the energy equation. Also the Rayleigh-Ritz method is utilized to perform variational operations on the unknown coefficients of the displacement admissible function. The free and transient thermal vibration characteristics can be solved with the standard dynamic equation. By comparing the calculation results with those obtained from the existing literatures and finite element analysis, the accuracy and reliability of the current model is demonstrated. Finally, the effect of the boundary conditions, material properties, geometric properties and temperature field on the transient vibration characteristics of FGM conical shells are investigated.
Key words: functionally graded conical shell; thermal environment; free vibration; transient vibration; spectro-geometric method
关键词
功能梯度圆锥壳 /
热环境 /
自由振动 /
瞬态振动 /
谱几何法
{{custom_keyword}} /
Key words
functionally graded conical shell /
thermal environment /
free vibration /
transient vibration /
spectro-geometric method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杜长城, 李映辉.功能梯度薄壁圆柱壳的自由振动[J].动力学与控制学报,2010, 08 (003): 219-223.
DU Changcheng, LI Yinghui. Free vibration of functionally graded cylindrical thin shells [J]. Journal of Dynamics and Control, 2010, 8(3): 219―223. (in Chinese)
[2] 陈金晓, 梁斌.弹性边界条件下的功能梯度圆柱壳振动特性研究[J].船舶力学,2017, 21 (007): 880-887.
CHEN Jinxiao, LIANG Bin. Study on the vibration of functionally graded material cylindrical shells under elastic boundary conditions [J]. Journal of Ship Mechanics, 2017, 21(7): 880―887. (in Chinese)
[3] Zhao X, Liew K M.Free vibration analysis of functionally graded conical shell panels by a meshless method[J].Composite Structures,2011, 93 (2): 649-664.
[4] 田宏业, 刘朋, 胡志宽, 等.基于半解析法的功能梯度圆锥板自由振动特性[J].船舶力学,2021, 25 (3): 9.
TIAN Hongye, LIU Peng, HU ZHIkuan, et al. Free vibration characteristics of functionally graded conical panels with complex boundary conditions[J]. Journal of Ship Mechanics, 2021, 25(3): 351―359. (in Chinese)
[5] 朱亚文. 功能梯度环扇形板的面内自由振动分析[D]. 兰州理工大学,2017.
ZHU Ya-wen. In-plane free vibration analysis for functionally graded material annular sector plates[D]. Lanzhou: Lanzhou University of Technology, 2017. (in Chinese)
[6] Żur K K.Free vibration analysis of elastically supported functionally graded annular plates via quasi-Green's function method[J].Composites Part B: Engineering,2018, 144: 37-55.
[7] Malekzadeh P, Fiouz A R, Sobhrouyan M.Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment[J].International Journal of Pressure Vessels and Piping,2012, 89: 210-221.
[8] Zhou K, Huang X, Tian J, et al.Vibration and flutter analysis of supersonic porous functionally graded material plates with temperature gradient and resting on elastic foundation[J].Composite Structures,2018, 204: 63-79.
[9] Li Z, Zhong R, Wang Q, et al.The thermal vibration characteristics of the functionally graded porous stepped cylindrical shell by using characteristic orthogonal polynomials[J].International Journal of Mechanical Sciences,2020, 182.
[10] Li Q-L, Yan X, Zhang J-H.Axisymmetric vibration analysis of graded porous Mindlin circular plates subjected to thermal environment[J].Journal of Mechanics of Materials and Structures,2021, 16 (3): 371-388.
[11] Shakouri M.Free vibration analysis of functionally graded rotating conical shells in thermal environment[J].Composites Part B: Engineering,2019, 163: 574-584.
[12] Singha T D, Rout M, Bandyopadhyay T, et al.Free vibration of rotating pretwisted FG-GRC sandwich conical shells in thermal environment using HSDT[J].Composite Structures,2021, 257: 113144.
[13] 滕兆春, 蒲育.温度影响下FGM圆环板的面内自由振动分析[J].振动与冲击,2015 (09): 210-217.
TENG Zhaochun, PU Yu. In-plane free vibration of FGM annular plates considering temperature effect[J]. Journal of Vibration and Shock, 2015, 34(9): 210―217. (in Chinese)
[14] 吕朋, 杜敬涛, 邢雪, 等.热环境下弹性边界约束FGM圆环板面内振动特性分析[J].振动工程学报,2017, 05 (v.30): 21-31.
LV Peng, DU Jingtao, Xing Xue, et al. Study on in-plane vibration characteristics of elastically restrained FGM annular panel in thermal environment[J]. Journal of Vibration Engineering, 2017, 30(5): 713―723. (in Chinese)
[15] 石先杰. 复杂边界条件下旋转结构统一动力学模型的构建与研究[D]. 哈尔滨工程大学,2014.
SHI Xianjie. The construction and analysis on unified dynamical model of revolve structures subjected to complex boundary conditions [D]. Harbin: Harbin Engineering University, 2014. (in Chinese)
[16] Tornabene F.Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution[J].Computer Methods in Applied Mechanics and Engineering,2009, 198 (37-40): 2911-2935.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}