多种接触状态下地铁车辆蛇行运动的稳定性演化

董昊亮1,2,文永蓬1,2,3,王向阳3,宗志祥4,吴俊汉1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 94-103.

PDF(2561 KB)
PDF(2561 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (18) : 94-103.
论文

多种接触状态下地铁车辆蛇行运动的稳定性演化

  • 董昊亮1,2,文永蓬1,2,3,王向阳3,宗志祥4,吴俊汉1,2
作者信息 +

Evolution of metro vehicle serpentine motion stability under multiple contact conditions

  • DONG Haoliang1,2,WEN Yongpeng1,2,3,WANG Xiangyang3,ZONG Zhixiang4,WU Junhan1,2
Author information +
文章历史 +

摘要

对上海地铁某线路车轮踏面磨耗情况进行了长期跟踪调查,发现地铁车轮随运营里程增加存在一定程度的偏磨的现象,可能引发列车横向蛇行运动的加剧,并导致车辆乘坐舒适性下降问题。为了探究服役条件下地铁车轮磨耗对列车蛇行横向运动稳定性的影响,首先建立了考虑轮对单点接触和两点接触的轮轨耦合横向动力学模型,明确了单点接触和两点接触轮对受力和轮对蛇行横向振动特性;然后针对踏面磨损和偏磨两种不同情况,分别讨论了轮对蛇行横向振动稳定性的影响,对磨耗车轮和理想无磨耗车轮的动力学差异进行对比,求解出了不同情况下的临界速度。研究结果表明:服役条件下车轮的磨损将使地铁车辆横向振动加剧,车轮横移的幅值也随车轮半径下降有所增大,蛇行临界速度降低,不利于行车安全;车轮偏磨会使轮径差增大,而轮径差的增大也会导致蛇行临界速度的降低,轮对产生不对称的蛇行运动,车轮碰撞单侧钢轨,轮径差达到2 mm时甚至可能危及行车安全。论文的工作对探究服役地铁车辆进一步提速和车轮廓形的维修保养具有一定的参考价值。
关键词:轮对;轮径差;横向振动;临界速度;稳定性

Abstract

A long-term follow-up investigation was conducted on the wheel tread wear of a certain line of the Shanghai Metro, and it was found that there is a certain degree of eccentric wear of the merto wheels with the increase of operating mileage, which may cause the intensification of the train's lateral serpentine movement and reduce the problem of vehicle ride comfort. In order to explore the influence of metro wheel abrasion on the stability of train serpentine lateral motion under service conditions, a wheel-rail coupling lateral dynamic model considering single-point contact and two-point contact of the wheel set was first established, and the single-point contact and two-point contact were clarified. Wheelset force and wheelset serpentine lateral vibration characteristics; then for the two different situations of tread wear and eccentric wear, the influence of wheelset serpentine lateral vibration stability is discussed separately, and the dynamics of worn wheels and ideal non-wear wheels are discussed. The difference is compared, and the critical speed in different situations is solved. The research results show that the wear of wheels under service conditions will aggravate the lateral vibration of metro vehicles, the amplitude of wheel lateral movement will also increase with the decrease of wheel radius, and the serpentine critical speed will decrease, which is not conducive to driving safety; wheel eccentric wear will cause The wheel diameter difference increases, and the increase of the wheel diameter difference will also cause the reduction of the serpentine critical speed, the wheelset produces asymmetrical serpentine motion, the wheel collides with a single-sided steel rail, and the wheel diameter difference reaches 2 mm may even endanger the driving Safety. The work of the thesis has certain reference value for exploring the further speed-up of the metro vehicles in service and the maintenance of the contours of the vehicles.
Key words: wheelset; wheel diameter difference;lateral vibration; critical speed; stability

关键词

轮对 / 轮径差 / 横向振动 / 临界速度 / 稳定性

Key words

wheelset / wheel diameter difference;lateral vibration / critical speed / stability

引用本文

导出引用
董昊亮1,2,文永蓬1,2,3,王向阳3,宗志祥4,吴俊汉1,2. 多种接触状态下地铁车辆蛇行运动的稳定性演化[J]. 振动与冲击, 2022, 41(18): 94-103
DONG Haoliang1,2,WEN Yongpeng1,2,3,WANG Xiangyang3,ZONG Zhixiang4,WU Junhan1,2. Evolution of metro vehicle serpentine motion stability under multiple contact conditions[J]. Journal of Vibration and Shock, 2022, 41(18): 94-103

参考文献

[1] 雷晓燕, 汪振国, 罗锟. 南昌地铁车辆动力学性能研究[J]. 铁道科学与工程学报, 2017(11):2460-2466.
LEI Xiaoyan,WANG Zhenguo,LUO Kun. Research on dynamic
performance of nanchang metro vehicle[J]. Journal of Railway
Science and Engineering, 2017(11):2460-2466.
[2] CUI D, LI L, WANG H,et al. High-speed EMU wheel re-profiling threshold for complex wear forms from dynamics viewpoint[J].  Wear, 2015, 338–339:307-315.
[3] LING L, JIANG P, WANG K,et al. Dynamic interaction between rail vehicles and vibration-attenuating slab tracks[J]. Construction and Building Materials, 2020, 258:119545.
[4] MAKSYM SPIRYAGIN,PERSSON I, HAYMAN M,et al. Friction measurement and creep force modelling methodology for locomotive track damage studies[J]. Wear, 2019, 432-433
[5] 石怀龙, 罗仁, 曾京. 国内外高速列车动力学评价标准综述[J].交通运输工程学报, 2021,21(01):36-58.
SHI Huailong, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation criteria of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(01):36-58.
[6] 张波, 曾京, 董浩. 非线性轮对陀螺系统的稳定性及分叉研究[J].振动、测试与诊断, 2015,35(5):955-960.
ZHANG Bo, ZENG Jing, DONG Hao. Research on the stability and bifurcation of nonlinear wheel-set gyro system[J]. Journal of Varration,Measurement & Diagnoisis,2015, 35(5): 955-960.
[7] 高学军, 李映辉, 乐源. 延续算法在简单轨道客车系统分岔中的应用[J]. 振动与冲击, 2012,31(20):177-182.
GAO Xuejun, LI Yinghui, YUE Yuan. Continuation method and its application in bifurcation of a railway passenger car system withsimple rails[J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2012, 31(20):177-182.
[8] SEDIGHI H M, SHIRAZI K H. Bifurcation analysis in hunting dynamical behavior in a railway bogie: Using novel exact equivalent functions for discontinuous nonlinearities[J]. Scientia Iranica, 2012,19( 6):1493-1501.
[9] 王开云, 刘鹏飞. 铁路货车通过曲线轨道时的非线性运动稳定性研究[J]. 中国铁道科学, 2011,32(02):85-89.
WANG Kaiyun, LIU Pengfei. Research on the nonlinear hunting stability of railway freight car on curved Ttrack[J].China Railway Science, 2011,32(02):85-89.
[10] 孙丽霞, 姚建伟. 高速铁道车辆蛇行脱轨安全性评判方法研究[J]. 中国铁道科学, 2013,34(5):82-92.
SUN Lixia, YAO Jiangwei. Study on safety evaluation method of high speed railway vehicle derailment[J].China Railway Science,2013,34(5):85-89
[11] YAN Y,  ZENG J. Hopf bifurcation analysis of railway bogie[J]. Nonlinear Dynamics, 2018,92(1):107-117.
[12] 尹波润,文永蓬,尚慧琳. 基于元胞自动机方法的地铁车轮磨损动态建模与仿真[J]. 机械工程学报, 2019,55(02):135-146.
YIN Borun, WEN Yongpeng, SHANG Huilin. Dynamic modeling and simulation of metro wheel wear based on cellular automata method[J]. Journal of Mechanical Engineering, 2019,55(02):135-146.
[13] 文永蓬, 尚慧琳, 董其炜,等. 城市轨道车辆车轮轮缘磨耗分析[J]. 科技导报, 2013,31(26):40-43.
WEN Yongpeng, SHANG Huilin, DONG Qiwei, et al.Wear of Wheel Flange of Urban Rail Vehicle[J]. Science & Technology Review, 2013,31(26):40-43.
[14] 文永蓬,宗志祥,翁琳,邹钰.全速度区间内车体多重被动式吸振器减振方法[J].中南大学学报(自然科学版),2020,51(03):853-862.
WEN Yongpeng, ZONG Zhixiang, WENG Lin, et al. Vibration reduction method of multiple passive vibration absorbers for vehicle body in full speed range [J]. Journal of Central South University(Science and Technology), 2020,51(03):853-862.
[15] 黄照伟,  崔大宾,杜星,等. 车轮偏磨对高速列车直线运行性能的影响[J]. 铁道学报, 2013(02):18-24.
HUANG Zhaowei, CUI Dabin, DU Xing,et al. Influence of deviated wear of wheel on performance of high - speed Train running on straight tracks[J]. Journal of The China Railway Society,2013(02):18-24.
[16] 韩鹏, 张卫华, 李艳,等. 轮对磨耗与轮径差对高速列车动力学性能的影响[J]. 交通运输工程学报, 2013, 13(06):47-53.
HAN Peng, ZHANG Weihua, LI Yan, et al. Influence of wheelset wear and wheel radius difference on dynamics performances of high - speed train[J]. Journal of Traffic and Transportation Engineering, 2013,13(06):47-53.
[17] EDIGHI H M, SHIRAZI K H. A survey of Hopf bifurcation analysis in nonlinear railway wheelset dynamics[J]. Journal of Vibroengineering, 2012,14(1):344-351.
[18] Mcfarlane M. Dynamics of single-axle rail wheelsets incorporating profiled wheels and rails[D]. Lakehead University (Canada). 2009.
[19] Caglar Uyulan,Metin Gokasan,Seta Bogosyan,Dane Quinn. Dynamic Investigation of the Hunting Motion of a Railway Bogie in a Curved Track via Bifurcation Analysis[J]. Mathematical Problems in Engineering,2017,2017.
[20] CHENG Y C, LEE S Y,  Chen H H. Modeling and nonlinear hunting stability analysis of high-speed railway vehicle moving on curved tracks[J]. Journal of Sound & Vibration, 2009,324(1-2):139-160.
[21] 张剑, 肖新标, 王玉艳,等. 三种高速轮对型面的性能比较[J]. 铁道学报, 2009, 31(2):23-31.
ZHANG Jian, XIAO Xinbiao, WANG Yuyan. Comparison of Characteristics of Three High-speed Wheelset Profiles [J]. Journal of the China Railway Society.
[22] 张政.动车组轮对运用维修性研究[D].西南交通大学,2014.
[23] 池茂儒, 张卫华, 曾京,等. 轮径差对车辆系统稳定性的影响[J]. 中国铁道科学, 2008, 29(06):65-70.
CHI Maoru, ZHANG Weihua, ZENG Jing. Influence of wheel diameter difference on the stability of vehicle system[J]. China Railway Science, 2008, 29(06):65-70.

PDF(2561 KB)

Accesses

Citation

Detail

段落导航
相关文章

/