基于滞回非线性基座结构的舰船低频线谱重构试验研究

武国勋1,2,贾星光2,张宇1,2,王嘉瑞2,姚熊亮2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 122-128.

PDF(2399 KB)
PDF(2399 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 122-128.
论文

基于滞回非线性基座结构的舰船低频线谱重构试验研究

  • 武国勋1,2,贾星光2,张宇1,2,王嘉瑞2,姚熊亮2
作者信息 +

Low frequency line spectrum reconstruction tests of ship vibration based on hysteretic nonlinear base structure

  • WU Guoxun1,2, JIA Xingguang2, ZHANG Yu1,2, WANG Jiarui2, YAO Xiongliang2
Author information +
文章历史 +

摘要

针对舰船振动噪声低频(100Hz以下)线谱重构问题,提出了一种含半主动作动元件(磁流变阻尼器)的滞回非线性基座结构,并给出了基于MRD电流调节的舰船振动低频线谱重构方法。首先,基于Bouc-Wen滞回非线性模型建立起了新型基座结构的运动方程并开展了数值仿真分析,发现MRD的引入在使基座振动出现了分岔、混沌特征,这为舰船振动线谱重构奠定了理论基础;为进一步验证所提滞回非线性基座的低频线谱重构效果,搭建了缩比模型试验平台并开展了线谱重构试验。试验结果表明:40组工况中线谱幅值降低效果平均达到49.8%,最大可达90.7%。
关键词:滞回非线性;低频线谱;基座;线谱重构 ;试验研究

Abstract

Aiming at problems of low frequency (below 100Hz) line spectrum reconstruction of ship vibration and noise, a hysteretic nonlinear base structure with semi-active actuator (Magnetorheological Damper) and a method of low frequency line spectrum reconstruction based on current regulation of MRD was proposed. Based on Bouc-Wen hysteretic nonlinear model, the motion equation of the new base structure was established and the numerical simulation analysis was carried out. The results show that the introduction of MRD makes the base vibration appear bifurcation and chaos characteristics, which lays a theoretical foundation for the reconstruction of ship vibration line spectrum. In order to further verify effects of line spectrum reconstruction, a scaled model test platform was built and the line spectrum reconstruction experiment was carried out. The results show that the average reduction effect of line spectrum amplitude is 49.8%, and the maximum is 90.7% in 40 groups of working conditions.
Key words: hysteresis nonlinearity; Low frequency line spectrum; base; line spectrum reconstruction; Experimental study

关键词

滞回非线性 / 低频线谱 / 基座 / 线谱重构 / 试验研究

Key words

hysteresis nonlinearity / Low frequency line spectrum / base / line spectrum reconstruction / Experimental study

引用本文

导出引用
武国勋1,2,贾星光2,张宇1,2,王嘉瑞2,姚熊亮2. 基于滞回非线性基座结构的舰船低频线谱重构试验研究[J]. 振动与冲击, 2022, 41(19): 122-128
WU Guoxun1,2, JIA Xingguang2, ZHANG Yu1,2, WANG Jiarui2, YAO Xiongliang2. Low frequency line spectrum reconstruction tests of ship vibration based on hysteretic nonlinear base structure[J]. Journal of Vibration and Shock, 2022, 41(19): 122-128

参考文献

[1] 王志鹏. 船舶设备低频线谱吸振与抗冲技术研究[D]. 哈尔滨工程大学, 2014.
WANG Zhi-peng. Research on low frequency line spectrum vibration absorption and anti impact technology of marine equipment [D]. Harbin Engineering University, 2014.
[2] 华宏星, 俞强. 船舶艉部激励耦合振动噪声机理研究进展与展望[J]. 中国舰船研究, 2017,12(04): 6-16.
HUA Hong-xing, YU Qiang. Research progress and Prospect of the mechanism of ship stern excitation coupled vibration and noise [J]. China Ship Research, 2017,12 (04): 6-16.
[3] 柴凯, 楼京俊, 朱石坚, 等. 两自由度非线性隔振系统的吸引子迁移控制[J]. 振动与冲击, 2018,37(22): 10-16.
CHAI Kai, LOU Jing-jun, ZHU Shi-jian, et al. Attractor transfer control of two degree of freedom nonlinear vibration isolation system [J]. Vibration and shock, 2018,37 (22): 10-16
[4] 古龙, 闵捷. 船舶振动噪声控制技术的现状与发展[J]. 舰船科学技术, 2019,41(23): 1-5.
GU Long, MIN Jie, Current situation and development of ship vibration and noise control technology [J]. Ship science and technology, 2019,41 (23): 1-5.
[5] 杨铁军, 陈玉强, 黄金娥, 等. 柴油机双层隔振系统耦合振动主动控制仿真研究[J]. 船舶工程, 2001(03): 24-27.
YANG Tie-Jun, CHEN Yu-qiang, HUANG Jin-e, et al. Simulation study on coupled vibration active control of double layer vibration isolation system of diesel engine [J]. Marine engineering, 2001 (03): 24-27.
[6] 李彦, 何琳, 帅长庚, 等. 船舶机械低频线谱振动传递的主动控制(英文)[J]. 船舶力学, 2015,19(12): 1549-1563.
LI Yan, HE Lin, SHUAI Chang-geng, et al. Active control of low frequency line spectrum vibration transmission of marine machinery [J]. Ship mechanics, 2015,19 (12): 1549-1563.
[7] 谢强, 帅长庚, 李彦. 主动控制中作动器非线性谐频的控制[J]. 噪声与振动控制, 2013,33(01): 56-58.
XIE Qiang, SHUAI Chang-geng, LI Yan. Nonlinear harmonic frequency control of actuator in active control [J]. Noise and vibration control, 2013,33 (01): 56-58.
[8] 王春雨, 何琳, 李彦, 等. 一种改进的窄带Fx-Newton算法及在振动主动控制中的应用[J]. 振动与冲击, 2017,36(18): 170-176.
WANG Chun-yu, HE Lin, LI Yan, et al. An improved narrow band FX Newton algorithm and its application in active vibration control [J]. Vibration and shock, 2017,36 (18): 170-176.
[9] 方昱斌, 朱晓锦, 高志远, 等. 多频线谱激励下的混合自适应微振动主动控制[J]. 振动.测试与诊断, 2021,41(01): 96-104.
FANG Yu-bin, ZHU Xiao-jin, GAO Zhi-yuan, et al. Hybrid adaptive micro vibration active control under multi frequency line spectrum excitation [J]. Vibration. Test and diagnosis, 2021,41 (01): 96-104.
[10] 王飞, 俞孟萨, 翁震平, 等. 基于Halbach阵列作动器的柴油机低频振动传递控制[J]. 船舶力学, 2019,23(07): 859-865.
WANG Fei, YU meng-sa, WENG Zhen-ping, et al. Low frequency vibration transfer control of diesel engine based on Halbach array actuator [J]. Ship mechanics, 2019,23 (07): 859-865.
[11]  HU C J, ZHENG Y, HU Y. Active Control of Vessel Navigation Noise's Specific Linear Spectrum: Active Control of Vessel Navigation Noise's Specific Linear Spectrum[C], 中国北京, 2012.
[12] HU C J, ZHENG Y. Active Control of Low Frequency Linear Spectrum by Estimating Receivers Location[J]. Advanced Materials Research, 2013,2708.
[13] LIU Y, SUN J, LOU J J. Numerical Study on the Spectrum Control Based on the Chaos Synchronization Technology[J]. Advanced Materials Research, 2012,1766.
[14] 杨庆超, 柴凯, 丰少伟, 等. 两自由度非线性隔振系统线谱混沌化控制技术研究[J]. 振动与冲击, 2020,39(16): 180-187.
YANG Qing-chao, CHAI Kai, FENG Shao-wei, et al. Research on line spectrum chaos control technology of two degree of freedom nonlinear vibration isolation system [J]. Vibration and shock, 2020,39 (16): 180-187.
[15] JIANG G P, TAO W J. Numerical investigation on multi-degree-freedom nonlinear chaotic vibration isolation[J]. Structural Engineering and Mechanics, 2014,51(4).
[16] ZHANG H L, ZHANG N, MIN F H, et al. Analysis on Chaotic Vibrations of the Magneto-Rheological Suspension System[J]. Applied Mechanics and Materials, 2016,4235.
[17] LOU J J, ZHU S J, HE L, et al. Experimental chaos in nonlinear vibration isolation system[J]. Chaos, Solitons and Fractals, 2007,40(3).
[18] ZHOU J X, XU D L, ZHANG J, et al. Spectrum optimization-based chaotification using time-delay feedback control[J]. Chaos, Solitons and Fractals, 2012,45(6).
[19] Noori, M., H. Davoodi and A. Saffar, An Itô-based general approximation method for random vibration of hysteretic systems, part I: Gaussian analysis. Journal of Sound and Vibration, 1988. 127(2): p. 331-342.
 

PDF(2399 KB)

Accesses

Citation

Detail

段落导航
相关文章

/