[1] 王志鹏. 船舶设备低频线谱吸振与抗冲技术研究[D]. 哈尔滨工程大学, 2014.
WANG Zhi-peng. Research on low frequency line spectrum vibration absorption and anti impact technology of marine equipment [D]. Harbin Engineering University, 2014.
[2] 华宏星, 俞强. 船舶艉部激励耦合振动噪声机理研究进展与展望[J]. 中国舰船研究, 2017,12(04): 6-16.
HUA Hong-xing, YU Qiang. Research progress and Prospect of the mechanism of ship stern excitation coupled vibration and noise [J]. China Ship Research, 2017,12 (04): 6-16.
[3] 柴凯, 楼京俊, 朱石坚, 等. 两自由度非线性隔振系统的吸引子迁移控制[J]. 振动与冲击, 2018,37(22): 10-16.
CHAI Kai, LOU Jing-jun, ZHU Shi-jian, et al. Attractor transfer control of two degree of freedom nonlinear vibration isolation system [J]. Vibration and shock, 2018,37 (22): 10-16
[4] 古龙, 闵捷. 船舶振动噪声控制技术的现状与发展[J]. 舰船科学技术, 2019,41(23): 1-5.
GU Long, MIN Jie, Current situation and development of ship vibration and noise control technology [J]. Ship science and technology, 2019,41 (23): 1-5.
[5] 杨铁军, 陈玉强, 黄金娥, 等. 柴油机双层隔振系统耦合振动主动控制仿真研究[J]. 船舶工程, 2001(03): 24-27.
YANG Tie-Jun, CHEN Yu-qiang, HUANG Jin-e, et al. Simulation study on coupled vibration active control of double layer vibration isolation system of diesel engine [J]. Marine engineering, 2001 (03): 24-27.
[6] 李彦, 何琳, 帅长庚, 等. 船舶机械低频线谱振动传递的主动控制(英文)[J]. 船舶力学, 2015,19(12): 1549-1563.
LI Yan, HE Lin, SHUAI Chang-geng, et al. Active control of low frequency line spectrum vibration transmission of marine machinery [J]. Ship mechanics, 2015,19 (12): 1549-1563.
[7] 谢强, 帅长庚, 李彦. 主动控制中作动器非线性谐频的控制[J]. 噪声与振动控制, 2013,33(01): 56-58.
XIE Qiang, SHUAI Chang-geng, LI Yan. Nonlinear harmonic frequency control of actuator in active control [J]. Noise and vibration control, 2013,33 (01): 56-58.
[8] 王春雨, 何琳, 李彦, 等. 一种改进的窄带Fx-Newton算法及在振动主动控制中的应用[J]. 振动与冲击, 2017,36(18): 170-176.
WANG Chun-yu, HE Lin, LI Yan, et al. An improved narrow band FX Newton algorithm and its application in active vibration control [J]. Vibration and shock, 2017,36 (18): 170-176.
[9] 方昱斌, 朱晓锦, 高志远, 等. 多频线谱激励下的混合自适应微振动主动控制[J]. 振动.测试与诊断, 2021,41(01): 96-104.
FANG Yu-bin, ZHU Xiao-jin, GAO Zhi-yuan, et al. Hybrid adaptive micro vibration active control under multi frequency line spectrum excitation [J]. Vibration. Test and diagnosis, 2021,41 (01): 96-104.
[10] 王飞, 俞孟萨, 翁震平, 等. 基于Halbach阵列作动器的柴油机低频振动传递控制[J]. 船舶力学, 2019,23(07): 859-865.
WANG Fei, YU meng-sa, WENG Zhen-ping, et al. Low frequency vibration transfer control of diesel engine based on Halbach array actuator [J]. Ship mechanics, 2019,23 (07): 859-865.
[11] HU C J, ZHENG Y, HU Y. Active Control of Vessel Navigation Noise's Specific Linear Spectrum: Active Control of Vessel Navigation Noise's Specific Linear Spectrum[C], 中国北京, 2012.
[12] HU C J, ZHENG Y. Active Control of Low Frequency Linear Spectrum by Estimating Receivers Location[J]. Advanced Materials Research, 2013,2708.
[13] LIU Y, SUN J, LOU J J. Numerical Study on the Spectrum Control Based on the Chaos Synchronization Technology[J]. Advanced Materials Research, 2012,1766.
[14] 杨庆超, 柴凯, 丰少伟, 等. 两自由度非线性隔振系统线谱混沌化控制技术研究[J]. 振动与冲击, 2020,39(16): 180-187.
YANG Qing-chao, CHAI Kai, FENG Shao-wei, et al. Research on line spectrum chaos control technology of two degree of freedom nonlinear vibration isolation system [J]. Vibration and shock, 2020,39 (16): 180-187.
[15] JIANG G P, TAO W J. Numerical investigation on multi-degree-freedom nonlinear chaotic vibration isolation[J]. Structural Engineering and Mechanics, 2014,51(4).
[16] ZHANG H L, ZHANG N, MIN F H, et al. Analysis on Chaotic Vibrations of the Magneto-Rheological Suspension System[J]. Applied Mechanics and Materials, 2016,4235.
[17] LOU J J, ZHU S J, HE L, et al. Experimental chaos in nonlinear vibration isolation system[J]. Chaos, Solitons and Fractals, 2007,40(3).
[18] ZHOU J X, XU D L, ZHANG J, et al. Spectrum optimization-based chaotification using time-delay feedback control[J]. Chaos, Solitons and Fractals, 2012,45(6).
[19] Noori, M., H. Davoodi and A. Saffar, An Itô-based general approximation method for random vibration of hysteretic systems, part I: Gaussian analysis. Journal of Sound and Vibration, 1988. 127(2): p. 331-342.