冲击作用下煤岩动态破坏机理的FDEM模拟研究

程树范1,高睿1,曾亚武1,张嘉凡2,陈世官3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 136-143.

PDF(2763 KB)
PDF(2763 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 136-143.
论文

冲击作用下煤岩动态破坏机理的FDEM模拟研究

  • 程树范1,高睿1,曾亚武1,张嘉凡2,陈世官3
作者信息 +

FDEM simulation of dynamic failure mechanism of coal rock under impact

  • CHENG Shufan1, GAO Rui1, ZENG Yawu1, ZHANG Jiafan2, CHEN Shiguan3
Author information +
文章历史 +

摘要

为研究煤岩的动态破坏规律,利用Φ50mm分离式霍普金森压杆(SHPB)装置,开展了煤岩冲击破坏实验;基于零厚度的内聚力单元建立了煤岩有限离散元(FDEM)模型,标定了模型参数;最后在LS-DYNA软件平台上模拟了SHPB冲击实验,讨论了FDEM模型在模拟动态破坏时的适用性,并对煤岩的破坏过程进行分析。研究表明:(1) 煤岩动态抗压强度与应变率满足经验关系,当应变率为98.05s-1、119.22s-1和135.85s-1时其动态强度因子(DIF)分别为1.92、2.08和2.23;(2) 冲击作用下煤岩的弹性变形阶段较短,塑性变形能力较强,动态弹性模量的应变率相关性不显著;(3) FDEM模型通过零厚度内聚力单元的失效能够模拟岩石类材料的脆性破坏,当网格尺寸合理时,由于惯性效应的存在,通过准静态试验标定的模型参数,也适用于冲击破坏的模拟;(4) 冲击作用下煤岩的破碎程度与冲击速度正相关,其破坏形式表现为压缩波引起的局部剪切破坏和泊松效应导致的整体张拉破坏。
关键词:冲击破坏;应变率相关性;分离式霍普金森压杆;有限-离散元方法;内聚力模型

Abstract

In order to study the dynamic failure law of coal, the impact failure experiment of coal was carried out by using the Φ 50mm split Hopkinson pressure bar (SHPB) device. A finite discrete element (FDEM) model of coal was established based on zero-thickness cohesive element and the relative model parameters were calibrated. Finally, the SHPB impact test is simulated on the LS-DYNA software platform, and the applicability of FDEM in dynamic failure simulating is discussed, and the failure process of coal is analyzed. The results show that: (1) the dynamic compressive strength and strain rate of coal and rock meet the empirical relationship. When the strain rate is 98.05s-1, 119.22s-1 and 135.85s-1, its dynamic strength factor (DIF) is 1.92, 2.08 and 2.23, respectively. (2) Under impact loading, the elastic deformation stage of coal is short, the plastic deformation ability is strong, and the strain rate dependence of dynamic elastic modulus is not significant. (3) FDEM model can simulate brittle failure of rock materials by failure of zero thickness cohesive force element. When the grid size is reasonable, the model parameters calibrated by quasi-static test are also suitable for impact failure simulation due to inertia effect. (4) The fracture degree of coal under impact is positively related to the impact velocity, and its failure forms are the local shear failure caused by compression wave loading and the entire tension failure caused by Poisson effect.
Key words: impact failure; strain rate dependence; split Hopkinson pressure bar (SHPB); hybrid finite-discrete element method (FDEM); cohesive model

关键词

冲击破坏 / 应变率相关性 / 分离式霍普金森压杆 / 有限-离散元方法 / 内聚力模型

Key words

 impact failure / strain rate dependence / split Hopkinson pressure bar (SHPB) / hybrid finite-discrete element method (FDEM) / cohesive model

引用本文

导出引用
程树范1,高睿1,曾亚武1,张嘉凡2,陈世官3. 冲击作用下煤岩动态破坏机理的FDEM模拟研究[J]. 振动与冲击, 2022, 41(19): 136-143
CHENG Shufan1, GAO Rui1, ZENG Yawu1, ZHANG Jiafan2, CHEN Shiguan3. FDEM simulation of dynamic failure mechanism of coal rock under impact[J]. Journal of Vibration and Shock, 2022, 41(19): 136-143

参考文献

[1] 武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(06):1625-1636.
(WU Qiang, TU Kun, ZENG Yi-fan, et al. Discussion on the main problems and countermeasures for building an upgradeversion of main energy (coal) industry in China[J]. Journal of China Coal Society, 2019, 44(06):1625-1636.)
[2] ZHANG Q, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials[J]. Rock Mechanics and Rock Engineering 2014; 47(04):1411–78.
[3] K XIA, W YAO. Dynamic rock tests using split Hopkinson (Kolsky) bar system-A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(01):27-59.
[4] 纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击, 2020, 39(13):176-183+214.
(JI Jiejie, LI Hongtao, WU Faming, et al. Fractal characteristics of rock fragmentation under impact load[J]. Journal of vibration and shock, 2020, 39(13):176-183+214.)
[5] 苗磊刚, 牛园园, 石必明. 不同应变率下岩-煤-岩组合体冲击动力试验研究[J]. 振动与冲击, 2019, 38(17):137-143.
(MIAO Leigang, LIU Yuanyuan, SHI Biming. Impact dynamic testsfor rock-coal-rock combination under different strain rates[J]. Journal of vibration and shock, 2019, 38(17):137-143.)
[6] 李成杰, 徐颖, 张宇婷, 等.冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J]. 岩石力学与工程学报, 2019, 38(11):2231-2241.
(LI Cheng-jie, XU Yin, ZHANG Yu-ting, et al. Study on energy evolution and fractal characteristics of cracked coal-like combined body under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11):2231-2241.)
[7] 刘少虹, 秦子晗, 娄金福. 一维动静加载下组合煤岩动态破坏特性的实验分析[J]. 岩石力学与工程学报, 2014, 33(10):2064-2075.
(LIU Shao-hong, QIN Zi-han, LOU Jin-fu. Experimental study of dynamic failure characteristics of coal compound under one-dimensional static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10):2064-2075.)
[8] 王春, 唐礼忠, 程露萍, 等. 一维静载与频繁扰动共同作用下含铜蛇纹岩动力学特性[J]. 振动与冲击, 2016, 35(09):219-226.
(WANG Chun, TANG Lizhong, CHENG Luping, et al. Dynamic characteristics of copper-bearing serpentine under combined action of one-dimensional static load and frequent disturbances[J]. Journal of vibration and shock, 2016, 35(09):219-226.)
[9] 平琦, 马芹永, 卢小雨, 等. 被动围压条件下岩石材料冲击压缩实验研究[J]. 振动与冲击, 2014, 33(02):55-59.
(PIN Qi, MA Qin-yong, LU Xiao-yu, et al. Impact compression test of rock material under passive confining pressure conditions[J]. Journal of vibration and shock, 2014, 33(02):55-59.)
[10] 解北京, 王新艳, 吕平洋. 层理煤岩SHPB冲击破坏动态力学特性实验[J]. 振动与冲击, 2017, 36(21):117-124.
(XIE Bei-jing, WANG Xin-yan, LV Ping-yang. Dynamic properties of bedding coal and rock and the SHPB testing for its impact damage[J]. Journal of vibration and shock, 2017, 36(21):117-124.)
[11] 凌天龙, 吴帅峰, 刘殿书, 等. 砂岩Holmquist-Johnson-Cook模型参数确定[J]. 煤炭学报, 2018, 43(08):2211-2216.
(LING Tian-long, WU Shuai-feng, LIU Dian-shu, et al. Determination of Holmquist-Johnson-Cook model parameters for sandstone[J]. Journal of China Coal Society, 2018, 43(08):2211-2216.)
[12] 李成武, 王金贵, 解北京, 等. 基于HJC本构模型的煤岩SHPB实验数值模拟[J]. 采矿与安全工程学报, 2016, 33(01):158-164.
(LI Cheng-wu, WANG Jin-gui, XIE Bei-jing, et al. Numerical simulation of SHPB tests for coal by using HJC model[J]. Journal of Mining & Safety Engineering, 2016, 33(01):158-164.)
[13] 李成武, 王金贵, 解北京, 等.煤岩材料SHPB实验被动围压数值模拟研究[J]. 采矿与安全工程学报, 2014, 31(06):957-962.
(LI Cheng-wu, WANG Jin-gui, XIE Bei-jing, et al. Numerical analysis of split Hopkinson pressure bar test with passive confined pressure for coal[J]. Journal of Mining & Safety Engineering, 2014, 31(06):957-962. )
[14] Y GUI, H BUI, J KODIKARA, et al. Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model[J]. International Journal of Impact Engineering, 2016(87):146-185.
[15] Y GUI, H BUI, J KODIKARA. An application of a cohesive fracture model combining compression, tension and shear in soft rocks[J]. Computers and Geotechnics, 2015(66):142-157.
[16] WU Z, ZHANG P, FAN L, et al. Numerical Study of the Effect of Confining Pressure on the Rock Breakage Efficiency and Fragment Size Distribution of a TBM Cutter Using a Coupled FEM-DEM Method[J]. Tunnelling and Underground Space Technology, 2019, 88: 260-275.
[17] Wang W , Liu Q , Ma H , et al. Numerical analysis of material modeling rock reinforcement in 2D FDEM and parameter study[J]. Computers and Geotechnics, 2020, 126:103767.
[18] Wang F , Liu S , Ji K. Numerical study on abrasive machining of rock using FDEM method[J]. Simulation Modelling Practice and Theory, 2020, 104:102145.
[19] WU Z, ZHANG P, FAN L, et al. Debris characteristics and scattering pattern analysis of reinforced concrete slabs subjected to internal blast loads–a numerical study[J]. International Journal of Impact Engineering, 2019, 131:1-16.
[20] 宫凤强, 李夕兵, 饶秋华, 等. 岩石SHPB试验中确定试样尺寸的参考方法[J]. 振动与冲击, 2013, 32(17):24-28.
(GONG Fengqiang, LI Xibing, RAO Qiuhua, et al. Reference method for determining sample size in SHPB tests of rock materials[J]. Journal of vibration and shock, 2013, 32(17):24-28.)
[21] 平琦, 马芹永, 袁璞. SHPB试验岩石试件应力平衡时间预估分析[J]. 振动与冲击, 2013,32(12):55-60.
(PING Qi, MA Qinyong, YUAN Pu. Prediction for stress equilibrium time in rock SHPB test[J]. Journal of vibration and shock, 2013,32(12):55-60.)
[22] 宫凤强, 王进, 李夕兵. 岩石压缩特性的率效应与动态增强因子统一模型[J]. 岩石力学与工程学报, 2018, 37(07):1586-1595.
(GONG Fengqiang, WANG Jin, LI Xibing. The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(07):1586-1595.)
[23] Kong X, Liu Q, Pan Y, et al. A method to estimate the pressure arch formation above underground excavation in rock mass[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2018, 71:382-390.
[24] LS-DYNA KEYWORD USER'S MANUAL VOLUME II Material Models. [M]. 181-188.

PDF(2763 KB)

Accesses

Citation

Detail

段落导航
相关文章

/