基于一维深度残差收缩网络的汇流行星排齿轮裂纹故障诊断

田钦文1,冯辅周2,李鸣2,陈晓明2,朱俊臻2,胡浩2,宋超2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 198-206.

PDF(2192 KB)
PDF(2192 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 198-206.
论文

基于一维深度残差收缩网络的汇流行星排齿轮裂纹故障诊断

  • 田钦文1,冯辅周2,李鸣2,陈晓明2,朱俊臻2,胡浩2,宋超2
作者信息 +

Gear crack fault diagnosis of convergent planetary rowbased on 1-D depth residual shrinkage network

  • TIAN Qinwen1, FENG Fuzhou2, LI Ming2, CHEN Xiaoming2, ZHU Junzhen2, HU Hao2, SONG Chao2
Author information +
文章历史 +

摘要

装甲车辆汇流行星排出现裂纹时,箱体表面振动信号干扰较多,常见的故障诊断方法存在一定的偏差,为此,提出一种利用一维深度残差收缩网络的汇流行星排齿轮裂纹故障诊断模型。其特点是将注意力机制与软阈值化结合,增强有用信息,抑制冗余信息,并将其引入到残差神经网络中,显著提高模型特征提取的能力。为了验证该模型的可行性,采集了行星轮四种不同程度裂纹的振动信号作为样本用于故障诊断。结果表明,针对汇流行星排齿轮箱振动信号该方法可以在更短的时间取得更高的准确率,相较其他方法,可以取得更好的分类结果。
关键词:深度学习;汇流行星排;故障诊断

Abstract

When cracks appear in the catchment star row of armored vehicles, there is a lot of interference on the surface of the box, and there is a certain deviation in the common fault diagnosis methods. For this reason, a crack diagnosis model of confluence planetary gear based on one-dimensional depth residual shrinkage network is proposed. Its characteristic is that it combines the attention mechanism with soft threshold to enhance the useful information, restrain the redundant information, and introduce it into the residual neural network to significantly improve the ability of model feature extraction. In order to verify the feasibility of the model, the vibration signals of four kinds of planetary gear cracks are collected as samples for fault diagnosis. The results show that this method can achieve higher accuracy in a shorter time for the vibration signal of the confluence planetary gear box, and can achieve better classification results than other methods.
Key words: Deep Learning; Convergent Planetary Bar; Crack Fault Diagnosis

关键词

深度学习 / 汇流行星排 / 故障诊断

Key words

Deep Learning / Convergent Planetary Bar / Crack Fault Diagnosis

引用本文

导出引用
田钦文1,冯辅周2,李鸣2,陈晓明2,朱俊臻2,胡浩2,宋超2. 基于一维深度残差收缩网络的汇流行星排齿轮裂纹故障诊断[J]. 振动与冲击, 2022, 41(19): 198-206
TIAN Qinwen1, FENG Fuzhou2, LI Ming2, CHEN Xiaoming2, ZHU Junzhen2, HU Hao2, SONG Chao2. Gear crack fault diagnosis of convergent planetary rowbased on 1-D depth residual shrinkage network[J]. Journal of Vibration and Shock, 2022, 41(19): 198-206

参考文献

[1] Wang X,Liu C,Bi F,et al.Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD fractal dimension[J].Mechanical Systems and Signal Processing,2013,41(1-2):581 -597.
[2] Antonini M,Barlaud M,Mathieu P,etal.Image coding using wavelet transform[J].IEEE Transactions on image processing,1992(02):205-220.
[3] 赵发刚,王翠珍,葛钊,周徐斌.基于谱相关函数Wigner-Ville谱的轴承分布故障信号分析[J].上海航天,2017,34(03):122-130.
 Zhao Fagang, Wang Cuizhen, Ge Zhao, Zhou Xubin. Analysis of bearing distributed fault signal based on spectral correlation function-Wigner-Ville spectrum[J]. Shanghai Aerospace, 2017, 34(03): 122-130.
[4] Ben Ali J , Fnaiech N , Saidi L , et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89:16-27.
[5] Chuan Zhao,Zhipeng Feng. Application of multi-domain sparse features for fault identification of planetary gearbox[J]. Measurement,2017.
[6] 冯志鹏,赵镭镭,褚福磊.行星齿轮箱齿轮局部故障振动频谱特征[J].中国电机工程学报,2013,33(05):119-127+19.
 Feng Zhipeng, Zhao Radium, Chu Fulei. Vibration spectrum characteristics of local fault of planetary gearbox gear [J]. Chinese Proceedings of Electrical Engineering, 2013,33 (05): 119-12719.
[7] 冯志鹏,褚福磊.行星齿轮箱故障诊断的频率解调分析方法[J].中国电机工程学报,2013,33(11):112-117+18.
 Feng Zhipeng,Chu Fulei.Frequency demodulation analysis method of planetary gearbox fault diagnosis[J].Proceedings of the Chinese Society for Electrical Engineering,2013,33(11):112-117+18
[8] 冯志鹏,褚福磊.行星齿轮箱故障诊断的扭转振动信号分析方法[J].中国电机工程学报,2013,33(14):101-106+2.
 Feng Zhipeng,Chu Fulei.Analysis method of torsional vibration signal for fault diagnosis of planetary gearbox[J].Proceedings of the Chinese Society for Electrical Engineering,2013,33(14):101-106+2.
[9] Chen, ZhiQiang, Chuan. Gearbox Fault Identification and ClassifZication with Convolutional Neural Networks.[J]. Shock & Vibration, 2015.
[10] 薛璇怡,庞新宇.基于1-DCNN的行星齿轮箱故障诊断[J].机械传动,2020,44(11):127-133.
 Xue Xuanyi,Pang Xinyu.Fault diagnosis of planetary gearbox based on 1-DCNN[J].Mechanical Transmission,2020,44(11):127-133.
[11] Shao H , Jiang H , Zhao H , et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2017.
[12] 赵光权,葛强强,刘小勇,彭喜元.基于DBN的故障特征提取及诊断方法研究[J].仪器仪表学报,2016,37(09):1946-1953..
 Zhao Guangquan,Ge Qiangqiang,Liu Xiaoyong,Peng Xiyuan.Research on fault feature extraction and diagnosis method based on DBN[J].Chinese Journal of Scientific Instrument,2016,37(09):1946-1953.
[13] Chen R , Huang X , Yang L , et al. Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform[J]. Computers in Industry, 2019, 106:48-59.
[14] 韩涛,袁建虎,唐建,安立周.基于MWT和CNN的滚动轴承智能复合故障诊断方法[J].机械传动,2016,40(12):139-143.
 Han Tao,Yuan Jianhu,Tang Jian,An Lizhou.Intelligent composite fault diagnosis method of rolling bearing based on MWT and CNN[J].Mechanical Transmission,2016,40(12):139-143.
[15] 袁建虎,韩涛,唐建,安立周.基于小波时频图和CNN的滚动轴承智能故障诊断方法[J].机械设计与研究,2017,33(02):93-97.
 Yuan Jianhu,Han Tao,Tang Jian,An Lizhou.An Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wavelet Time-Frequency Diagram and CNN[J].Machinery Design and Research,2017,33(02):93-97.
[16] 李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018,37(19)
 Li Heng, Zhang Hydro, Qin Xianrong, et al. Bearing fault diagnosis method based on short-time Fourier transform and convolutional neural network [J]. Vibration and Shock, 2018, 37(19)
[17] 周奇才,刘星辰,赵炯,沈鹤鸿,熊肖磊.旋转机械一维深度卷积神经网络故障诊断研究[J].振动与冲击,2018,37(23):31-37.
 Zhou Qicai,Liu Xingchen,Zhao Jiong,Shen Hehong,Xiong Xiaolei.Research on the Fault Diagnosis of Rotating Machinery One-dimensional Deep Convolutional Neural Network[J].Journal of Vibration and Shock,2018,37(23):31-37.
[18] Verstockt, Steven, Loccufier, et al. Convolutional Neural Network Based Fault Detection for Rotating Machinery[J]. Journal of Sound and Vibration, 2016, 377:331-345.
[19] Chen, ZhiQiang, Chuan. Gearbox Fault Identification and Classification with Convolutional Neural Networks.[J]. Shock & Vibration, 2015.
[20] 吴春志,江鹏程,冯辅周,陈汤,陈祥龙.基于一维卷积神经网络的齿轮箱故障诊断[J].振动与冲击,2018,37(22):51-56.
 Wu Chunzhi, Jiang Pengcheng, Feng Fuzhou, Chen Tang, Chen Xianglong. Gearbox fault diagnosis based on one-dimensional convolutional neural network[J].Vibration and Shock,2018,37(22):51-56.
[21] 叶壮,余建波.基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法[J].振动与冲击,2020,39(20):55-66.
 Ye Zhuang,Yu Jianbo.Gearbox fault diagnosis method based on multi-channel one-dimensional convolutional neural network feature learning[J].Vibration and Shock,2020,39(20):55-66.v
[22] He K , Zhang X , Ren S , et al. Deep Residual Learning for Image Recognition[J]. 2016.
[23] He K , Zhang X , Ren S , et al. Identity Mappings in Deep Residual Networks[J]. 2016.
[24] 赵小强,梁浩鹏.使用改进残差神经网络的滚动轴承变工况故障诊断方法[J].西安交通大学学报,2020,54(09):23-31.
 Zhao Xiaoqiang,Liang Haopeng.A Fault Diagnosis Method of Rolling Bearing under Variable Conditions Using Improved Residual Neural Network[J].Journal of Xi'an Jiaotong University,2020,54(09):23-31.
[25] 周兴康,余建波.基于深度一维残差卷积自编码网络的齿轮箱故障诊断[J].机械工程学报,2020,56(07):96-108.
 Zhou Xingkang,Yu Jianbo.Gearbox fault diagnosis based on deep one-dimensional residual convolutional autoencoding network[J].Chinese Journal of Mechanical Engineering,2020,56(07):96-108.
[26] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
[27] Mnih V , Heess N , Graves A , et al. Recurrent Models of Visual Attention[J]. Advances in Neural Information Processing Systems, 2014, 3.
[28] Yin W , Schütze, Hinrich, Xiang B , et al. ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs[J]. Computer Science, 2015.
[29] 张成帆,江泽鹏,曹伟,陈伟,张敏.一种一维多尺度卷积神经网络及其在滚动轴承故障诊断中的应用[J/OL].机械科学与技术:1-7[2021-03-11]
 Zhang Chengfan, Jiang Zepeng, Cao Wei, Chen Wei, Zhang Min. A one-dimensional multi-scale convolutional neural network and its application in rolling bearing fault diagnosis[J/OL].Mechanical Science and Technology: 1-7[2021-03 -11]
[30] Zhao M , Zhong S , Fu X , et al. Deep Residual Shrinkage Networks for Fault Diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, PP(99):1-1.
[31] Donoho D L.De-noising by soft-thresholding[J]. IEEE transactions on information theory,1995, 41(3): 613-627.
[32] 周奇才,刘星辰,赵炯,沈鹤鸿,熊肖磊.旋转机械一维深度卷积神经网络故障诊断研究[J].振动与冲击,2018,37(23):31-37.
 Zhou Qicai,Liu Xingchen,Zhao Jiong,Shen Hehong,Xiong Xiaolei.Research on the Fault Diagnosis of Rotating Machinery One-dimensional Deep Convolutional Neural Network[J].Journal of Vibration and Shock,2018,37(23):31-37.
[33] 胡少梁. 基于深度学习的行星齿轮箱智能诊断方法研究[D].大连理工大学,2021.
[34] 胡向东,梁川.基于SE-ResNeXt的滚动轴承故障诊断方法[J].计算机测量与控制,2021,29(7):46-51.
HU Xiangdong, LIANG Chuan.Fault diagnosis method of     rolling bearing based on SE-ResNeXt[J]. Computer     Measurement & Control,2021,29(7):46-51.
[35] 曹正志,叶春明.改进CNN-LSTM模型在滚动轴承故障诊断中的应用[J].计算机系统应用,2021,30(3):126-133.
CAO Zhengzhi, YE Chunming. Application of improved CNN-LSTM model in fault diagnosis of rolling bearings[J].  Computer Systems and Applications, 2021, 30(3): 126-133
[36]仝钰,庞新宇,魏子涵.基于GADF-CNN的滚动轴承故障诊断方法[J].振动与冲击,2021,40(5):247-253.
TONG Yu, PANG Xinyu, WEI Zihan. Fault diagnosis method of rolling bearing based on GADF-CNN[J].Journal of Vibration and Shock, 2021,40(5):247-253.

PDF(2192 KB)

Accesses

Citation

Detail

段落导航
相关文章

/