本文通过对T800复合材料层合板进行一系列的端部压溃试验,重点研究了长度、厚度、铺层顺序、触发角以及胶结压力等因素对复合材料层合板破坏模式和力学性能的影响。通过分析复合材料板在端部压溃过程中的载荷-位移曲线和观察试验样件端部破坏形貌,揭示其破坏机理。结果表明:复合材料平板的端部压溃过程为非稳态脆性断裂模式,而含45°触发角的复合材料层合板的端部压溃过程为层束弯曲破坏模式;在端部压溃试验中复合材料平板压缩强度随着厚度的增加逐渐上升,而长度的增加会减少其压缩强度,同时[45/90/-45/0]3s铺层比[45/0/-45/0]3s铺层拥有更好的抗轴向承载能力;触发角的加入会改变试件在压溃过程中的破坏模式并极大降低试件压溃时的压缩强度,是影响复合材料结构吸能能力的关键因素;最后,研究还发现不同胶结压力下,复合材料层板的力学性能随着胶结压力的增加逐渐提高,但达到一定胶结压力值后,继续增加胶结压力力学性能反而下降。
关键词:复合材料层合板;宏观破坏模式;端部压溃;触发角;胶结压力
Abstract
In this research, a series of end crush experiments was carried out on T800 composite laminates. The effects of different lengths, thicknesses, stacking sequences, trigger angles and cementation pressures on the compressive properties of composite materials were studied. The failure mechanism was revealed by analyzing the load-displacement curve of the composite laminates in the process of end crush and observing the end failure morphology of the test sample. The results show that the end crushing process of composite laminates is unstable brittle fracture mode, while the end crushing process of composite laminates with 45° trigger angle is beam bending failure mode; In the end crushing test, the compressive strength of composite laminates increases with the increase of thickness, while the increase of length decreases the compressive strength. At the same time, [45/90/-45/0]3s laminates has better axial bearing capacity than [45/0/-45/0]3s laminates; The addition of trigger angle will change the failure mode and greatly reduce the compressive strength of the specimen during crushing, which is the key factor affecting the energy absorption capacity of composite structure; Finally, it is found that the mechanical properties of composite laminates under different cementation pressures increase gradually with cementation pressures, but the mechanical properties decrease when the cementation pressures increase to a certain value.
Keywords: Composite laminates; Macroscopic failure mode; End crushing; Trigger angle; Cementation pressure
关键词
复合材料层合板 /
宏观破坏模式 /
端部压溃 /
触发角 /
胶结压力
{{custom_keyword}} /
Key words
Composite laminates /
Macroscopic failure mode /
End crushing /
Trigger angle /
Cementation pressure
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MARSH G J R P. Aero engines lose weight thanks to composites [J]. 2012, 56(6): 32-5.
[2] 梁春华, 李宏新, 凌瑶. 先进航空涡扇发动机风扇/压气机的先进结构与新材料[J]. 航空制造技术, 2007(1):60-63.
Liang Chunhua, Li Hongxin, Ling Yao. Advanced structure and new material of fan/compressor for advanced aero turbofan engine [J]. Aeronautical Manufacturing Tech-nology, 2007(1):60-63.
[3] 梁春华. 纤维增强树脂基复合材料部件在航空涡扇发动机上的应用[J]. 航空制造技术, 2008(04):32-37.
Liang Chunhua. Application of fiber reinforced resin matrix composites in aero turbofan engine [J]. Aeronautical Manufacturing Technology, 2008 (04): 32-37.
[4] 黄建城, 王鑫伟. 薄弱环节对复合材料吸能元件轴向压溃性能的影响综述[J]. 船舶力学, 2011,15(08):930-939.
Huang Jiancheng, Wang Xinwei. Review on the effect of weak link on axial collapse of composite energy absorbing element. [J]. Journal of Ship Mechanics, 2011(08):930-939.
[5] OSTRé B, BOUVET C, MINOT C, et al. Experimental analysis of CFRP laminates subjected to compression af-ter edge impact [J]. 2016, 152:767-78.
[6] MAMALIS A G, MANOLAKOS D E, VIEGELAHN G L J J O C M. Crashworthy Behaviour of thin-walled tubes of fiber glass composite materials subjected to axial loading [J]. 1990, 24(1): 72-91.
[7] HULL D J C S, TECHNOLOGY. A unified approach to progressive crushing of fiber-reinforced composite tubes [J]. 1991, 40(4): 377-421.
[8] FARLEY G L, JONES R M J J C M. Crushing character-istics of continuous fiber-reinforced composite tubes [J]. 1992, 26(1): 37-50.
[9] 张平, 桂良进, 范子杰. 编织复合材料圆管准静态轴向压缩吸能特性的试验研究[J]. 复合材料学报, 2007(01):146-150.
Zhang Ping, Gui Liangjin, Fan Zijie. Experimental study on energy absorption characteristics of braided composite tube under quasi-static axial compression [J]. Acta Mate-riae Composite Sinica, 2007(01):146-150.
[10] PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Comparative study of the quasi-static energy absorp-tion of small-scale composite tubes with different geo-metrical shapes for use in sacrificial cladding structures [J]. 2010, 29(3): 381-96.
[11] 牟浩蕾, 张雪晗, 宋东方,等. 复合材料层合结构破坏机理及压溃吸能特性分析[J]. 振动与冲击, 2018, 37(22):194-200+213.
Mou Haolei, Zhang Xuehan, Song Dongfang, et al. Analysis of failure mechanism and collapse energy absorption characteristics of composite laminates[J]. Journal of Vi-bration and Shock, 2018, 37(22):194-200+213.
[12] 解江, 马骢瑶, 霍雨佳,等. 纤维铺层角度对复合材料薄壁圆管轴向压溃吸能特性影响研究[J]. 振动与冲击, 2018,37(20):200-206.
Xie Jiang, Ma Cong Yao, Huo Yujia, et al. Study on the Influ-ence of fiber laying angle on the energy absorption char-acteristics of composites thin-walled circular tubes in axial compression [J]. Journal of Vibration and Shock, 2018,37(20):200-206.
[13] 解江, 张雪晗, 苏璇,等. 铺层顺序对复合材料薄壁圆管轴向压溃吸能特性的影响研究[J]. 工程力学, 2018,35(06):231-239.
Xie Jiang, Zhang Xuehan, Su Xuan, et al. Study on the influ-ence of layout sequence on the energy absorption charac-teristics of thin-walled composite pipe in axial compres-sion [J]. Engineering Mechanics, 2018, 35 (06): 231-239.
[14] 龚俊杰. 复合材料结构耐撞性及可控薄弱环节研究[D]. 南京航空航天大学, 2007.
Gong Junjie Research on crashworthiness and controllable weaknesses of composite structures [D]. Nanjing Uni-versity of Aeronautics and Astronautics, 2007.
[15] 黄建城, 王鑫伟, 袁张贤. 含薄弱环节复合材料圆管耐撞性研究[J]. 南京航空航天大学学报, 2010(04):423-428.
Huang Jiancheng, Wang Xinwei, Yuan Zhangxian. Study on crashworthiness of composite circular tube with weak link[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010(04):423-428.
[16] DUBEY D D, VIZZINI A J J J O C M. Energy absorp-tion of composite plates and tubes [J]. 1998, 32(2): 158-76.
[17] 李晔,张连旺,张尧州,等. 厚度对RTM成型国产T800碳纤维增强复合材料力学性能的影响[J]. 高科技纤维与应用 2020,45(04): 31-6.
LI Ye, ZHANG Lianwang, ZHANG Yaozhou, et al. Effect of thickness on mechanical properties of domestic T800 carbon fiber reinforced composites formed by RTM [J]. High Technology Fiber and Application 2020, 45(04): 31-6.
[18] 李平, 李逸, 张永建,等. 固化压力对复合材料层压板力学性能的影响 塑料工业 [J]. 2019, 47(12): 45-8.
Li P, Li Y, Zhang Y J, et al. Effect of curing pressure on me-chanical properties of composite laminates [J]. Plastics Industry, 2019, 47(12): 45-8.
[19] 李伟, 张晨乾, 叶宏军, et al. 固化工艺参数对国产T800增强高韧性复合材料性能的影响 复合材料科学与工程 [J]. 2020(06): 98-104.
Li W, Zhang C G, Ye H J, et al. Effect of curing parameters on properties of domestic T800 reinforced high toughness composites [J]. Composites Science and Engineering, 2020(06): 98-104.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}